Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zookeys ; 1111: 245-265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760846

RESUMO

To establish the biogeographic affinities of the caddisfly fauna of Mongolia, published records and results of our faunistic studies were analyzed. This study captured more than 47,000 adults collected from 386 locations beside lakes, ponds, streams/rivers, and springs in ten sub-basins of Mongolia using Malaise traps, aerial sweeping, and ultraviolet lights. In total, 201 species have been recorded, and approximately 269 species may occur in Mongolia according to our estimation. In a comparison of species richness for the family level, the Limnephilidae and Leptoceridae were the richest in species. The families Brachycentridae, Glossosomatidae, and Psychomyiidae had low species richness, but they included the most dominant species in terms of abundance and/or the percentage of occurrence in the samples from multiple sub-basins. Comparing the sub-basins, the Selenge had the highest Shannon diversity (H' = 3.3) and the Gobi sub-basin had the lowest (H' = 1.5). According to the Jaccard index of similarity, caddisfly species assemblages of Mongolia's ten sub-basins were divided into two main groups: One group includes the Selenge, Shishkhed, Bulgan, Tes, and Depression of Great Lakes sub-basins; the other group includes the Kherlen, Onon, Khalkh Gol, Valley of Lakes, and Gobi sub-basins. The majority of Mongolian species were composed of East Palearctic taxa, with a small percentage of West Palearctic and Nearctic representatives and an even smaller percentage from the Oriental region, suggesting that the Mongolian Gobi Desert is, and has been, a significant barrier to the distribution of caddisfly species between China and Mongolia.

2.
Artigo em Inglês | MEDLINE | ID: mdl-27481793

RESUMO

DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between 'Barcode Index Numbers' (BINs) and 'species' that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description.This article is part of the themed issue 'From DNA barcodes to biomes'.


Assuntos
Código de Barras de DNA Taxonômico , Insetos/classificação , Filogenia , Animais , Biodiversidade , Haplótipos , Insetos/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA