Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mol Biol Cell ; 33(14): ar136, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200892

RESUMO

In vertebrates, epithelial cell-cell junctions must rapidly remodel to maintain barrier function as cells undergo dynamic shape-change events. Consequently, localized leaks sometimes arise within the tight junction (TJ) barrier, which are repaired by short-lived activations of RhoA, called "Rho flares." However, how RhoA is activated at leak sites remains unknown. Here we asked which guanine nucleotide exchange factor (GEF) localizes to TJs to initiate Rho activity at Rho flares. We find that p115RhoGEF locally activates Rho flares at sites of TJ loss. Knockdown of p115RhoGEF leads to diminished Rho flare intensity and impaired TJ remodeling. p115RhoGEF knockdown also decreases junctional active RhoA levels, thus compromising the apical actomyosin array and junctional complex. Furthermore, p115RhoGEF is necessary to promote local leak repair to maintain TJ barrier function. In all, our work demonstrates a central role for p115RhoGEF in activating junctional RhoA to preserve barrier function and direct local TJ remodeling.


Assuntos
Junções Íntimas , Proteína rhoA de Ligação ao GTP , Animais , Junções Íntimas/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Proteína rhoA de Ligação ao GTP/metabolismo
2.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35254388

RESUMO

Epithelial cell-cell junctions remodel in response to mechanical stimuli to maintain barrier function. Previously, we found that local leaks in tight junctions (TJs) are rapidly repaired by local, transient RhoA activation, termed "Rho flares," but how Rho flares are regulated is unknown. Here, we discovered that intracellular calcium flashes and junction elongation are early events in the Rho flare pathway. Both laser-induced and naturally occurring TJ breaks lead to local calcium flashes at the site of leaks. Additionally, junction elongation induced by optogenetics increases Rho flare frequency, suggesting that Rho flares are mechanically triggered. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSCs) reduces the amplitude of calcium flashes and diminishes the sustained activation of Rho flares. MSC-dependent calcium influx is necessary to maintain global barrier function by regulating reinforcement of local TJ proteins via junction contraction. In all, we uncovered a novel role for MSC-dependent calcium flashes in TJ remodeling, allowing epithelial cells to repair local leaks induced by mechanical stimuli.


Assuntos
Cálcio , Junções Íntimas , Proteína rhoA de Ligação ao GTP , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Genetics ; 204(1): 115-28, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27343237

RESUMO

Replication stress causes breaks at chromosomal locations called common fragile sites. Deletions causing loss of heterozygosity (LOH) in human tumors are strongly correlated with common fragile sites, but the role of gene conversion in LOH at fragile sites in tumors is less well studied. Here, we investigated gene conversion stimulated by instability at fragile site FS2 in the yeast Saccharomyces cerevisiae In our screening system, mitotic LOH events near FS2 are identified by production of red/white sectored colonies. We analyzed single nucleotide polymorphisms between homologs to determine the cause and extent of LOH. Instability at FS2 increases gene conversion 48- to 62-fold, and conversions unassociated with crossover represent 6-7% of LOH events. Gene conversion can result from repair of mismatches in heteroduplex DNA during synthesis-dependent strand annealing (SDSA), double-strand break repair (DSBR), and from break-induced replication (BIR) that switches templates [double BIR (dBIR)]. It has been proposed that SDSA and DSBR typically result in shorter gene-conversion tracts than dBIR. In cells under replication stress, we found that bidirectional tracts at FS2 have a median length of 40.8 kb and a wide distribution of lengths; most of these tracts are not crossover-associated. Tracts that begin at the fragile site FS2 and extend only distally are significantly shorter. The high abundance and long length of noncrossover, bidirectional gene-conversion tracts suggests that dBIR is a prominent mechanism for repair of lesions at FS2, thus this mechanism is likely to be a driver of common fragile site-stimulated LOH in human tumors.


Assuntos
Sítios Frágeis do Cromossomo , Saccharomyces cerevisiae/genética , Quebra Cromossômica , Cromossomos Fúngicos , Troca Genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , DNA Fúngico/genética , Conversão Gênica/genética , Perda de Heterozigosidade , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA