Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 39(6): 2501-2526, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755585

RESUMO

Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Evasão da Resposta Imune , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Epigênese Genética
2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834058

RESUMO

Puberty is a critical developmental period of life characterized by marked physiological changes, including changes in the immune system and gut microbiota development. Exposure to inflammation induced by immune stressors during puberty has been found to stimulate central inflammation and lead to immune disturbance at distant sites from the gut; however, its enduring effects on gut immunity are not well explored. Therefore, in this study, we used a pubertal lipopolysaccharides (LPS)-induced inflammation mouse model to mimic pubertal exposure to inflammation and dysbiosis. We hypothesized that pubertal LPS-induced inflammation may cause long-term dysfunction in gut immunity by enduring dysregulation of inflammatory signaling and epigenetic changes, while prebiotic/probiotic intake may mitigate the gut immune system deregulation later in life. To this end, four-week-old female Balb/c mice were fed prebiotics/probiotics and exposed to LPS in the pubertal window. To better decipher the acute and enduring immunoprotective effects of biotic intake, we addressed the effect of treatment on interleukin (IL)-17 signaling related-cytokines and pathways. In addition, the effect of treatment on gut microbiota and epigenetic alterations, including changes in microRNA (miRNA) expression and DNA methylation, were studied. Our results revealed a significant dysregulation in selected cytokines, proteins, and miRNAs involved in key signaling pathways related to IL-17 production and function, including IL-17A and F, IL-6, IL-1ß, transforming growth factor-ß (TGF-ß), signal transducer and activator of transcription-3 (STAT3), p-STAT3, forkhead box O1 (FOXO1), and miR-145 in the small intestine of adult mice challenged with LPS during puberty. In contrast, dietary interventions mitigated the lasting adverse effects of LPS on gut immune function, partly through epigenetic mechanisms. A DNA methylation analysis demonstrated that enduring changes in gut immunity in adult mice might be linked to differentially methylated genes, including Lpb, Rorc, Runx1, Il17ra, Rac1, Ccl5, and Il10, involved in Th17 cell differentiation and IL-17 production and signaling. In addition, prebiotic administration prevented LPS-induced changes in the gut microbiota in pubertal mice. Together, these results indicate that following a healthy diet rich in prebiotics and probiotics is an optimal strategy for programming immune system function in the critical developmental windows of life and controlling inflammation later in life.


Assuntos
Interleucina-17 , Cogumelos Shiitake , Camundongos , Animais , Feminino , Interleucina-17/metabolismo , Cogumelos Shiitake/metabolismo , Lipopolissacarídeos/toxicidade , Maturidade Sexual , Prebióticos , Transdução de Sinais , Citocinas/metabolismo , Inflamação , Epigênese Genética
3.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163030

RESUMO

c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) family members integrate signals that affect proliferation, differentiation, survival, and migration in a cell context- and cell type-specific way. JNK and p38 MAPK activities are found upregulated in nasopharyngeal carcinoma (NPC). Studies have shown that activation of JNK and p38 MAPK signaling can promote NPC oncogenesis by mechanisms within the cancer cells and interactions with the tumor microenvironment. They regulate multiple transcription activities and contribute to tumor-promoting processes, ranging from cell proliferation to apoptosis, inflammation, metastasis, and angiogenesis. Current literature suggests that JNK and p38 MAPK activation may exert pro-tumorigenic functions in NPC, though the underlying mechanisms are not well documented and have yet to be fully explored. Here, we aim to provide a narrative review of JNK and p38 MAPK pathways in human cancers with a primary focus on NPC. We also discuss the potential therapeutic agents that could be used to target JNK and p38 MAPK signaling in NPC, along with perspectives for future works. We aim to inspire future studies further delineating JNK and p38 MAPK signaling in NPC oncogenesis which might offer important insights for better strategies in diagnosis, prognosis, and treatment decision-making in NPC patients.


Assuntos
Antineoplásicos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Humanos , Carcinoma Nasofaríngeo/enzimologia , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/enzimologia , Neoplasias Nasofaríngeas/patologia
4.
J Cell Mol Med ; 25(17): 8187-8200, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34322995

RESUMO

Prostate cancer (PCa) is the second most common malignancy and is the fifth leading cause of cancer mortality among men globally. Docetaxel-based therapy remains the first-line treatment for metastatic castration-resistant prostate cancer. However, dose-limiting toxicity including neutropenia, myelosuppression and neurotoxicity is the major reason for docetaxel dose reductions and fewer cycles administered, despite a recent study showing a clear survival benefit with increased total number of docetaxel cycles in PCa patients. Although previous studies have attempted to improve the efficacy and reduce docetaxel toxicity through drug combination, no drug has yet demonstrated improved overall survival in clinical trial, highlighting the challenges of improving the activity of docetaxel monotherapy in PCa. Herein, we identified 15 lethality hits for which inhibition could enhance docetaxel sensitivity in PCa cells via a high-throughput kinome-wide loss-of-function screen. Further drug-gene interactions analyses identified Janus kinase 1 (JAK1) as a viable druggable target with existing experimental inhibitors and FDA-approved drugs. We demonstrated that depletion of endogenous JAK1 enhanced docetaxel-induced apoptosis in PCa cells. Furthermore, inhibition of JAK1/2 by baricitinib and ruxolitinib synergizes docetaxel sensitivity in both androgen receptor (AR)-negative DU145 and PC3 cells, but not in the AR-positive LNCaP cells. In contrast, no synergistic effects were observed in cells treated with JAK2-specific inhibitor, fedratinib, suggesting that the synergistic effects are mainly mediated through JAK1 inhibition. In conclusion, the combination therapy with JAK1 inhibitors and docetaxel could be a useful therapeutic strategy in the treatment of prostate cancers.


Assuntos
Azetidinas/farmacologia , Docetaxel/farmacologia , Janus Quinase 1/antagonistas & inibidores , Nitrilas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Purinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Masculino
5.
Breast Cancer Res Treat ; 179(3): 615-629, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31784862

RESUMO

PURPOSE: Breast cancer stem cells (CSCs) are a small subpopulation of cancer cells that have high capability for self-renewal, differentiation, and tumor initiation. CSCs are resistant to chemotherapy and radiotherapy, and are responsible for cancer recurrence and metastasis. METHODS: By utilizing a panel of breast cancer cells and mammospheres culture as cell-based screening platforms, we performed high-throughput chemical library screens to identify agents that are effective against breast CSCs and non-CSCs. The hit molecules were paired with conventional chemotherapy to evaluate the combinatorial treatment effects on breast CSCs and non-CSCs. RESULTS: We identified a total of 193 inhibitors that effectively targeting both breast CSCs and non-CSCs. We observed that histone deacetylase inhibitors (HDACi) synergized conventional chemotherapeutic agents (i.e., doxorubicin and cisplatin) in targeting breast CSCs and non-CSCs simultaneously. Further analyses revealed that quisinostat, a potent inhibitor for class I and II HDACs, potentiated doxorubicin-induced cytotoxicity in both breast CSCs and non-CSCs derived from the basal-like (MDA-MB-468 and HCC38), mesenchymal-like (MDA-MB-231), and luminal-like breast cancer (MCF-7). It was also observed that the basal-like breast CSCs and non-CSCs were more sensitive to the co-treatment of quisinostat with doxorubicin compared to that of the luminal-like breast cancer subtype. CONCLUSION: In conclusion, this study demonstrates the potential of HDACi as therapeutic options, either as monotherapy or in combination with chemotherapeutics against refractory breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Bibliotecas de Moléculas Pequenas
6.
Apoptosis ; 23(5-6): 343-355, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29740790

RESUMO

Pancreatic adenocarcinoma (PDAC) is a highly aggressive cancer with a high chance of recurrence, limited treatment options, and poor prognosis. A recent study has classified pancreatic cancers into four molecular subtypes: (1) squamous, (2) immunogenic, (3) pancreatic progenitor and (4) aberrantly differentiated endocrine exocrine. Among all the subtypes, the squamous subtype has the worst prognosis. This study aims to utilize large scale genomic datasets and computational systems biology to identify potential drugs targeting the squamous subtype of PDAC through combination therapy. Using the transcriptomic data available from the International Cancer Genome Consortium, Cancer Cell Line Encyclopedia and Connectivity Map, we identified 26 small molecules that could target the squamous subtype of PDAC. Among them include inhibitors targeting the SRC proto-oncogene (SRC) and the mitogen-activated protein kinase kinase 1/2 (MEK1/2). Further analyses demonstrated that the SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib) synergized gemcitabine sensitivity specifically in the squamous subtype of PDAC cells (SW1990 and BxPC3), but not in the PDAC progenitor cells (AsPC1). Further analysis revealed that the synergistic effects are dependent on SRC or MEK1/2 activities, as overexpression of SRC or MEK1/2 completely abrogated the synergistic effects SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib). In contrast, no significant toxicity was observed in the MRC5 human lung fibroblast and ARPE-19 human retinal pigment epithelial cells. Together, our findings suggest that combinations of SRC or MEK inhibitors with gemcitabine possess synergistic effects on the squamous subtype of PDAC cells and warrant further investigation.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Desoxicitidina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Ductal Pancreático/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Desoxicitidina/uso terapêutico , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Inibidores Enzimáticos/uso terapêutico , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Transcriptoma , Gencitabina
7.
Toxicol Appl Pharmacol ; 329: 347-357, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28673683

RESUMO

Single-walled carbon nanotubes (SWCNTs) are carbon-based nanomaterials that possess immense industrial potential. Despite accumulating evidence that exposure to SWCNTs might be toxic to humans, our understanding of the mechanisms for cellular toxicity of SWCNTs remain limited. Here, we demonstrated that acute exposure of short (1-3µm) and regular-length (5-30µm) pristine, carboxylated or hydroxylated SWCNTs inhibited cell proliferation in human somatic and human stem cells in a cell type-dependent manner. The toxicity of regular-length pristine SWCNT was most evidenced in NP69>CYT00086>MCF-10A>MRC-5>HaCaT > HEK-293T>HepG2. In contrast, the short pristine SWCNTs were relatively less toxic in most of the cells being tested, except for NP69 which is more sensitive to short pristine SWCNTs as compared to regular-length pristine SWCNTs. Interestingly, carboxylation and hydroxylation of regular-length SWCNTs, but not the short SWCNTs, significantly reduced the cytotoxicity. Exposure of SWCNTs also induced caspase 3 and 9 activities, mitochondrial membrane depolarization, and significant apoptosis and necrosis in MRC-5 embryonic lung fibroblasts. In contrast, SWCNTs inhibited the proliferation of HaCaT human keratinocytes without inducing cell death. Further analyses by gene expression profiling and Connectivity Map analysis showed that SWCNTs induced a gene expression signature characteristic of heat shock protein 90 (HSP90) inhibition in MRC-5 cells, suggesting that SWCNTs may inhibit the HSP90 signaling pathway. Indeed, exposure of MRC-5 cells to SWCNTs results in a dose-dependent decrease in HSP90 client proteins (AKT, CDK4 and BCL2) and a concomitant increase in HSP70 expression. In addition, SWCNTs also significantly inhibited HSP90-dependent protein refolding. Finally, we showed that ectopic expression of HSP90, but not HSP40 or HSP70, completely abrogated the cytotoxic effects of SWCNTs, suggesting that SWCNT-induced cellular toxicity is HSP90 dependent. In summary, our findings suggest that the toxic effects of SWCNTs are mediated through inhibition of HSP90 in human lung fibroblasts and keratinocytes.


Assuntos
Ácidos Carboxílicos/toxicidade , Fibroblastos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Queratinócitos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Células Hep G2 , Humanos , Hidroxilação , Queratinócitos/metabolismo , Queratinócitos/patologia , Pulmão/metabolismo , Pulmão/patologia , Necrose , Fatores de Tempo , Transfecção
8.
J Nat Prod ; 80(10): 2734-2740, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28926237

RESUMO

Tengerensine (1), isolated as a racemate and constituted from a pair of bis-benzopyrroloisoquinoline enantiomers, and tengechlorenine (2), purified as a scalemic mixture and constituted from a pair of chlorinated phenanthroindolizidine enantiomers, were isolated from the leaves of Ficus fistulosa var. tengerensis, along with three other known alkaloids. The structures of 1 and 2 were determined by spectroscopic data interpretation and X-ray diffraction analysis. The enantiomers of 1 were separated by chiral-phase HPLC, and the absolute configurations of (+)-1 and (-)-1 were established via experimental and calculated ECD data. Compound 1 is notable in being a rare unsymmetrical cyclobutane adduct and is the first example of a dimeric benzopyrroloisoquinoline alkaloid, while compound 2 represents the first naturally occurring halogenated phenanthroindolizidine alkaloid. Compound (+)-1 displayed a selective in vitro cytotoxic effect against MDA-MB-468 cells (IC50 7.4 µM), while compound 2 showed pronounced in vitro cytotoxic activity against all three breast cancer cell lines tested (MDA-MB-468, MDA-MB-231, and MCF7; IC50 values of 0.038-0.91 µM).


Assuntos
Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Ciclobutanos/isolamento & purificação , Ciclobutanos/farmacologia , Ficus/química , Compostos Heterocíclicos de 4 ou mais Anéis/isolamento & purificação , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Alcaloides/química , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/tratamento farmacológico , Cristalografia por Raios X , Ciclobutanos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Indolizinas/química , Concentração Inibidora 50 , Isoquinolinas , Malásia , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Fenantrolinas/química , Folhas de Planta/química , Estereoisomerismo
9.
Arch Toxicol ; 90(1): 103-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25273022

RESUMO

Carbon nanotubes (CNTs) are an important class of nanomaterials, which have numerous novel properties that make them useful in technology and industry. Generally, there are two types of CNTs: single-walled nanotubes (SWNTs) and multi-walled nanotubes. SWNTs, in particular, possess unique electrical, mechanical, and thermal properties, allowing for a wide range of applications in various fields, including the electronic, computer, aerospace, and biomedical industries. However, the use of SWNTs has come under scrutiny, not only due to their peculiar nanotoxicological profile, but also due to the forecasted increase in SWNT production in the near future. As such, the risk of human exposure is likely to be increased substantially. Yet, our understanding of the toxicological risk of SWNTs in human biology remains limited. This review seeks to examine representative data on the nanotoxicity of SWNTs by first considering how SWNTs are absorbed, distributed, accumulated and excreted in a biological system, and how SWNTs induce organ-specific toxicity in the body. The contradictory findings of numerous studies with regards to the potential hazards of SWNT exposure are discussed in this review. The possible mechanisms and molecular pathways associated with SWNT nanotoxicity in target organs and specific cell types are presented. We hope that this review will stimulate further research into the fundamental aspects of CNTs, especially the biological interactions which arise due to the unique intrinsic characteristics of CNTs.


Assuntos
Nanotubos de Carbono/toxicidade , Animais , Carga Corporal (Radioterapia) , Exposição Ambiental/efeitos adversos , Humanos , Nanotecnologia , Especificidade de Órgãos , Farmacocinética , Medição de Risco , Distribuição Tecidual , Testes de Toxicidade/métodos
10.
Apoptosis ; 20(10): 1373-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276035

RESUMO

Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers.


Assuntos
Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Reparo do DNA/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Antineoplásicos/metabolismo , Compostos de Bifenilo , Neoplasias da Mama/tratamento farmacológico , Ciclofosfamida/metabolismo , Dano ao DNA/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Células-Tronco Embrionárias/metabolismo , Epirubicina/metabolismo , Feminino , Fibroblastos/metabolismo , Fluoruracila/metabolismo , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Pulmão/citologia , Pironas/farmacologia , Ribonucleotídeos/farmacologia , Tiofenos/farmacologia
11.
Cell Biochem Biophys ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466472

RESUMO

Hepatocellular carcinoma (HCC) remains a major global health problem with high incidence and mortality. Diagnosis of HCC at late stages and tumour heterogeneity in patients with different genetic profiles are known factors that complicate the disease treatment. HCC therapy becomes even more challenging in patients with drug resistance such as resistance to sorafenib, which is a common drug used in HCC patients. Sorafenib resistance can further aggravate HCC by regulating various oncogenic pathways such as autophagy and nuclear factor-kappa Beta (NF-ĸß) signalling. Sirtuin 1 (SIRT1), is a nicotinamide adenosine dinucleotide (NAD)-dependent histone deacetylases that regulates various metabolic and oncogenic events such as cell survival, apoptosis, autophagy, tumourigenesis, metastasis and drug resistance in various cancers, but its role in HCC, particularly in sorafenib resistance is underexplored. In this study, we generated sorafenib-resistant HepG2 and Huh-7 liver cancer cell models to investigate the role of SIRT1 and its effect on autophagy and nuclear factor-kappa Beta (NF-ĸß) signalling pathways. Western blot analysis showed increased SIRT1, altered autophagy pathway and activated NF-Ä¸ß signalling in sorafenib-resistant cells. SIRT1-silenced HCC cells demonstrated down-regulated autophagy in both parental and chemoresistant cells. This may occur through the deacetylation of key autophagy molecules such as FOXO3, beclin 1, ATGs and LC3 by SIRT1, highlighting the role of SIRT1 in autophagy induction. Silencing of SIRT1 also resulted in activated NF-Ä¸ß signalling. This is because SIRT1 failed to deacetylate p65 subunit of NF-κB, translocate the NF-κB from nucleus to cytoplasm, and suppress NF-κB activity due to the silencing. Hence, the NF-κB transcriptional activity was restored. These findings summarize the role of SIRT1 in autophagy/NF-Ä¸ß regulatory axis, with a similar trend observed in both parental and sorafenib-resistant cells. The present work promotes a better understanding of the role of SIRT1 in autophagy and NF-Ä¸ß signalling in HCC and sorafenib-resistant HCC. As some key proteins in these pathways are potential therapeutic targets, a better understanding of SIRT1/autophagy/NF-Ä¸ß axis could further improve the therapeutic strategies against HCC.

12.
PLoS One ; 18(1): e0280483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649290

RESUMO

Most studies reporting prevalence of obesity use actual weight and height measurements. Self-reported weight and height have been used in epidemiological studies as they have been shown to be reliable, convenient, and inexpensive alternatives to actual measurements. However, the accuracy of self-reported weight and height might vary in different regions because of the difference in health awareness and social influences. This study aims to determine the accuracy and reliability of self-reported weight and height compared to actual measured weight and height among adults in Malaysia. This was a cross-sectional study conducted at the community level during blood pressure screening campaigns. Participants self-reported their weight and height in a questionnaire survey. Their weight and height were validated using measurements by researchers on the same setting. Body mass index (BMI) was defined as underweight (<18.5kg/m2), normal (18.5-22.9 kg/m2), overweight (23-27.4 kg/m2) and obesity (≥27.5 kg/m2). Bland-Altman analysis, intraclass correlation coefficients and weighted Kappa statistics were used to assess the degree of agreement between self-reported and measured weight and height. A total of 2781 participants were recruited in this study. The difference between the mean self-reported and measured weight and height were 0.4 kg and 0.4 cm respectively. Weighted Kappa statistics analysis showed that there was a substantial agreement between the BMI classifications derived from self-reported and actual measurement (Ò¡ = 0.920, p<0.001). There was no marked difference in the sensitivity and specificity of self-reported BMI among Malaysian adults by gender. We observed substantial agreement between self-reported and measured body weight and height within a sample of Malaysian adults. While self-reported body weight showed weaker agreement with actual measurements particularly for obese and overweight individuals, BMI values derived from self-reported weight and height were accurate for 88.53% of the participants. We thus conclude that self-reported height and weight measures may be useful for tracking and estimating population trends amongst Malaysian adults.


Assuntos
Estatura , Sobrepeso , Humanos , Adulto , Sobrepeso/diagnóstico , Sobrepeso/epidemiologia , Autorrelato , Pressão Sanguínea , Estudos Transversais , Malásia/epidemiologia , Reprodutibilidade dos Testes , Peso Corporal , Índice de Massa Corporal , Obesidade/diagnóstico , Obesidade/epidemiologia
13.
Microorganisms ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37894114

RESUMO

Gut immune system homeostasis is crucial to overall host health. Immune disturbance at the gut level may lead to systemic and distant sites' immune dysfunction. Probiotics and prebiotics consumption have been shown to improve gut microbiota composition and function and enhance gut immunity. In the current study, the immunomodulatory and anti-inflammatory effects of viable and heat-inactivated forms of the novel probiotic bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53), as well as the prebiotic protocatechuic acid (PCA) derived from the fermentation of blueberry juice by SV-53, were examined. To this end, female Balb/c mice received probiotic (viable or heat-inactivated), prebiotic, or a mixture of viable probiotic and prebiotic in drinking water for three weeks. To better decipher the immunomodulatory effects of biotics intake, gut microbiota, gut mucosal immunity, T helper-17 (Th17) cell-related cytokines, and epigenetic modulation of Th17 cells were studied. In mice receiving viable SV-53 and PCA, a significant increase was noted in serum IgA levels and the number of IgA-producing B cells in the ileum. A significant reduction was observed in the concentrations of proinflammatory cytokines, including interleukin (IL)-17A, IL-6, and IL-23, and expression of two proinflammatory miRNAs, miR-223 and miR425, in treated groups. In addition, heat-inactivated SV-53 exerted immunomodulatory properties by elevating the IgA concentration in the serum and reducing IL-6 and IL-23 levels in the ileum. DNA methylation analysis revealed the role of heat-inactivated SV-53 in the epigenetic regulation of genes related to Th17 and IL-17 production and function, including Il6, Il17rc, Il9, Il11, Akt1, Ikbkg, Sgk1, Cblb, and Smad4. Taken together, these findings may reflect the potential role of the novel probiotic bacterium SV-53 and prebiotic PCA in improving gut immunity and homeostasis. Further studies are required to ascertain the beneficial effects of this novel bacterium in the inflammatory state.

14.
Clin Epigenetics ; 15(1): 102, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309009

RESUMO

BACKGROUND: Epigenetic alterations are a near-universal feature of human malignancy and have been detected in malignant cells as well as in easily accessible specimens such as blood and urine. These findings offer promising applications in cancer detection, subtyping, and treatment monitoring. However, much of the current evidence is based on findings in retrospective studies and may reflect epigenetic patterns that have already been influenced by the onset of the disease. METHODS: Studying breast cancer, we established genome-scale DNA methylation profiles of prospectively collected buffy coat samples (n = 702) from a case-control study nested within the EPIC-Heidelberg cohort using reduced representation bisulphite sequencing (RRBS). RESULTS: We observed cancer-specific DNA methylation events in buffy coat samples. Increased DNA methylation in genomic regions associated with SURF6 and REXO1/CTB31O20.3 was linked to the length of time to diagnosis in the prospectively collected buffy coat DNA from individuals who subsequently developed breast cancer. Using machine learning methods, we piloted a DNA methylation-based classifier that predicted case-control status in a held-out validation set with 76.5% accuracy, in some cases up to 15 years before clinical diagnosis of the disease. CONCLUSIONS: Taken together, our findings suggest a model of gradual accumulation of cancer-associated DNA methylation patterns in peripheral blood, which may be detected long before clinical manifestation of cancer. Such changes may provide useful markers for risk stratification and, ultimately, personalized cancer prevention.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Estudos de Casos e Controles , Estudos Prospectivos , Estudos Retrospectivos , Metilação de DNA , Proteínas Nucleares
15.
Nat Rev Cancer ; 22(10): 576-591, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35854147

RESUMO

Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.


Assuntos
Ácidos Aristolóquicos , Neoplasias , Ácidos Aristolóquicos/toxicidade , Humanos , Mutagênese , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Saúde Pública
16.
Cancers (Basel) ; 14(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35158756

RESUMO

Bladder cancer (BC) is the ninth leading cause of cancer death with one of the highest recurrence rates among all cancers. One of the main risks for BC development is exposure to nitrosamines present in tobacco smoke or in other products. Aberrant epigenetic (DNA methylation) changes accompanied by deregulated gene expression are an important element of cancer pathogenesis. Therefore, we aimed to determine DNA methylation signatures and their impacts on gene expression in mice treated with N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN), a carcinogen similar to compounds found in tobacco smoke. Following BBN administration mice developed non-invasive or invasive bladder cancers. Surprisingly, muscle- and neuronal-related pathways emerged as the most affected in those tumors. Hypo- and hypermethylation changes were present within non-invasive BC, across CpGs mapping to the genes involved in muscle- and neuronal-related pathways, however, methylation differences were not sufficient to affect the expression of the majority of associated genes. Conversely, invasive tumors displayed hypermethylation changes that were linked with alterations in gene expression profiles. Together, these findings indicate that bladder cancer progression could be revealed through methylation profiling at the pre-invasive cancer stage that could assist monitoring of cancer patients and guide novel therapeutic approaches.

17.
Cancers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954379

RESUMO

Despite medical advancements, the prognosis of pancreatic ductal adenocarcinoma (PDAC) has not improved significantly over the past 50 years. By utilising the large-scale genomic datasets available from the Australia Pancreatic Cancer Project (PACA-AU) and The Cancer Genomic Atlas Project (TCGA-PAAD), we studied the immunophenotype of PDAC in silico and identified that tumours with high cytotoxic T lymphocytes (CTL) killing activity were associated with favourable clinical outcomes. Using the STRING protein-protein interaction network analysis, the identified differentially expressed genes with low CTL killing activity were associated with TWIST/IL-6R, HDAC5, and EOMES signalling. Following Connectivity Map analysis, we identified 44 small molecules that could restore CTL sensitivity in the PDAC cells. Further high-throughput chemical library screening identified 133 inhibitors that effectively target both parental and CTL-resistant PDAC cells in vitro. Since CTL-resistant PDAC had a higher expression of histone proteins and its acetylated proteins compared to its parental cells, we further investigated the impact of histone deacetylase inhibitors (HDACi) on CTL-mediated cytotoxicity in PDAC cells in vitro, namely SW1990 and BxPC3. Further analyses revealed that givinostat and dacinostat were the two most potent HDAC inhibitors that restored CTL sensitivity in SW1990 and BxPC3 CTL-resistant cells. Through our in silico and in vitro studies, we demonstrate the novel role of HDAC inhibition in restoring CTL resistance and that combinations of HDACi with CTL may represent a promising therapeutic strategy, warranting its further detailed molecular mechanistic studies and animal studies before embarking on the clinical evaluation of these novel combined PDAC treatments.

18.
Front Mol Biosci ; 8: 748470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820423

RESUMO

Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.

19.
Cancers (Basel) ; 13(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918087

RESUMO

Epstein-Barr virus (EBV) infection is recognised as one of the causative agents in most nasopharyngeal carcinoma (NPC) cases. Expression of EBV viral antigens can induce host's antiviral immune response by activating the inflammasomes to produce pro-inflammatory cytokines, such as interleukin-1ß (IL-1ß) and IL-18. These cytokines are known to be detrimental to a wide range of virus-infected cells, in which they can activate an inflammatory cell death program, called pyroptosis. However, aberrant inflammasome activation and production of its downstream cytokines lead to chronic inflammation that may contribute to various diseases, including NPC. In this review, we summarise the roles of inflammasomes during viral infection, how EBV evades inflammasome-mediated immune response, and progress into tumourigenesis. The contrasting roles of inflammasomes in cancer, as well as the current therapeutic approaches used in targeting inflammasomes, are also discussed in this review. While the inflammasomes appear to have dual roles in carcinogenesis, there are still many questions that remain unanswered. In particular, the exact molecular mechanism responsible for the regulation of the inflammasomes during carcinogenesis of EBV-associated NPC has not been explored thoroughly. Furthermore, the current practical application of inflammasome inhibitors is limited to specific tumour types, hence, further studies are warranted to discover the potential of targeting the inflammasomes for the treatment of NPC.

20.
Clin Epigenetics ; 13(1): 224, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920739

RESUMO

Metformin and weight loss relationships with epigenetic age measures-biological aging biomarkers-remain understudied. We performed a post-hoc analysis of a randomized controlled trial among overweight/obese breast cancer survivors (N = 192) assigned to metformin, placebo, weight loss with metformin, or weight loss with placebo interventions for 6 months. Epigenetic age was correlated with chronological age (r = 0.20-0.86; P < 0.005). However, no significant epigenetic aging associations were observed by intervention arms. Consistent with published reports in non-cancer patients, 6 months of metformin therapy may be inadequate to observe expected epigenetic age deceleration. Longer duration studies are needed to better characterize these relationships.Trial Registration: Registry Name: ClincialTrials.Gov.Registration Number: NCT01302379.Date of Registration: February 2011.URL: https://clinicaltrials.gov/ct2/show/NCT01302379.


Assuntos
Envelhecimento/genética , Neoplasias da Mama/fisiopatologia , Metformina/farmacologia , Sobrepeso/terapia , Idoso , Envelhecimento/fisiologia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Metformina/administração & dosagem , Pessoa de Meia-Idade , Sobrepeso/epidemiologia , Pós-Menopausa , Sobreviventes/estatística & dados numéricos , Programas de Redução de Peso/métodos , Programas de Redução de Peso/normas , Programas de Redução de Peso/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA