Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gen Physiol Biophys ; 42(6): 469-478, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37855238

RESUMO

This study aimed to examine the endothelial dependence of vasodilation induced by the phosphodiesterase inhibitor theophylline in isolated rat thoracic aortas and elucidate the underlying mechanism, with emphasis on endothelial nitric oxide (NO). The effects of various inhibitors and endothelial denudation on theophylline-induced vasodilation, and the effect of theophylline on vasodilation induced by NO donor sodium nitroprusside, cyclic guanosine monophosphate (cGMP) analog bromo-cGMP, and ß-agonist isoproterenol in endothelium-denuded aorta were examined. The effects of theophylline and sodium nitroprusside on cGMP formation were also examined. We examined the effect of theophylline on endothelial nitric oxide synthase (eNOS) phosphorylation and intracellular calcium levels. Theophylline-induced vasodilation was greater in endothelium-intact aortas than that in endothelium-denuded aortas. The NOS inhibitor, NW-nitro-L-arginine methyl ester; non-specific guanylate cyclase (GC) inhibitor, methylene blue; and NO-sensitive GC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one inhibited theophylline-induced vasodilation in endothelium-intact aortas. Theophylline increased the vasodilation induced by sodium nitroprusside, bromo-cGMP, and isoproterenol. Theophylline increased cGMP formation in endothelium-intact aortas, and sodium nitroprusside-induced cGMP formation in endothelium-denuded aortas. Moreover, theophylline increased stimulatory eNOS (Ser1177) phosphorylation and endothelial calcium levels, but decreased the phosphorylation of inhibitory eNOS (Thr495). These results suggested that theophylline-induced endothelium-dependent vasodilation was mediated by increased endothelial NO release and phosphodiesterase inhibition.


Assuntos
Óxido Nítrico , Vasodilatação , Ratos , Animais , Teofilina/farmacologia , Isoproterenol/farmacologia , Nitroprussiato/farmacologia , Diester Fosfórico Hidrolases/farmacologia , Cálcio , Aorta Torácica , Aorta , Óxido Nítrico Sintase Tipo III , GMP Cíclico/farmacologia , GMP Cíclico/fisiologia , Endotélio Vascular
2.
Int J Mol Sci ; 24(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240087

RESUMO

This study aimed to examine the effect of lipid emulsion on the vasodilation induced by a toxic dose of amlodipine in isolated rat aorta and elucidate its mechanism, with a particular focus on nitric oxide. The effects of endothelial denudation, NW-nitro-L-arginvine methyl ester (L-NAME), methylene blue, lipid emulsion, and linolenic acid on the amlodipine-induced vasodilation and amlodipine-induced cyclic guanosine monophosphate (cGMP) production were examined. Furthermore, the effects of lipid emulsion, amlodipine, and PP2, either alone or combined, on endothelial nitric oxide synthase (eNOS), caveolin-1, and Src-kinase phosphorylation were examined. Amlodipine-induced vasodilation was higher in endothelium-intact aorta than in endothelium-denuded aorta. L-NAME, methylene blue, lipid emulsion, and linolenic acid inhibited amlodipine-induced vasodilation and amlodipine-induced cGMP production in the endothelium-intact aorta. Lipid emulsion reversed the increased stimulatory eNOS (Ser1177) phosphorylation and decreased inhibitory eNOS (Thr495) phosphorylation induced via amlodipine. PP2 inhibited stimulatory eNOS, caveolin-1, and Src-kinase phosphorylation induced via amlodipine. Lipid emulsion inhibited amlodipine-induced endothelial intracellular calcium increase. These results suggest that lipid emulsion attenuated the vasodilation induced via amlodipine through inhibiting nitric oxide release in isolated rat aorta, which seems to be mediated via reversal of stimulatory eNOS (Ser1177) phosphorylation and inhibitory eNOS (Thr495) dephosphorylation, which are also induced via amlodipine.


Assuntos
Anlodipino , Emulsões Gordurosas Intravenosas , Óxido Nítrico , Fosfolipídeos , Óleo de Soja , Vasodilatação , Vasodilatadores , Emulsões Gordurosas Intravenosas/farmacologia , Óxido Nítrico/metabolismo , Aorta , Feminino , Animais , Técnicas In Vitro , Anlodipino/toxicidade , Vasodilatadores/toxicidade , NG-Nitroarginina Metil Éster/farmacologia , Fosfolipídeos/farmacologia , Óleo de Soja/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA