Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38837333

RESUMO

MOTIVATION: Cryo-electron microscopy (cryo-EM) is a powerful technique for studying macromolecules and holds the potential for identifying kinetically preferred transition sequences between conformational states. Typically, these sequences are explored within two-dimensional energy landscapes. However, due to the complexity of biomolecules, representing conformational changes in two dimensions can be challenging. Recent advancements in reconstruction models have successfully extracted structural heterogeneity from cryo-EM images using higher-dimension latent space. Nonetheless, creating high-dimensional conformational landscapes in the latent space and then searching for preferred paths continues to be a formidable task. RESULTS: This study introduces an innovative framework for identifying preferred trajectories within high-dimensional conformational landscapes. Our method encompasses the search for the minimum energy path in the graph, where edge weights are determined based on the energy estimation at each node using local density. The effectiveness of this approach is demonstrated by identifying accurate transition states in both synthetic and real-world datasets featuring continuous conformational changes. AVAILABILITY AND IMPLEMENTATION: The CLEAPA package is available at https://github.com/tengyulin/energy_aware_pathfinding/.


Assuntos
Algoritmos , Microscopia Crioeletrônica , Software , Microscopia Crioeletrônica/métodos , Conformação Molecular , Conformação Proteica
2.
J Struct Biol ; 216(1): 108058, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38163450

RESUMO

In single-particle cryo-electron microscopy (cryo-EM), efficient determination of orientation parameters for particle images poses a significant challenge yet is crucial for reconstructing 3D structures. This task is complicated by the high noise levels in the datasets, which often include outliers, necessitating several time-consuming 2D clean-up processes. Recently, solutions based on deep learning have emerged, offering a more streamlined approach to the traditionally laborious task of orientation estimation. These solutions employ amortized inference, eliminating the need to estimate parameters individually for each image. However, these methods frequently overlook the presence of outliers and may not adequately concentrate on the components used within the network. This paper introduces a novel method using a 10-dimensional feature vector for orientation representation, extracting orientations as unit quaternions with an accompanying uncertainty metric. Furthermore, we propose a unique loss function that considers the pairwise distances between orientations, thereby enhancing the accuracy of our method. Finally, we also comprehensively evaluate the design choices in constructing the encoder network, a topic that has not received sufficient attention in the literature. Our numerical analysis demonstrates that our methodology effectively recovers orientations from 2D cryo-EM images in an end-to-end manner. Notably, the inclusion of uncertainty quantification allows for direct clean-up of the dataset at the 3D level. Lastly, we package our proposed methods into a user-friendly software suite named cryo-forum, designed for easy access by developers.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Microscopia Crioeletrônica/métodos , Incerteza , Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA