Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nanomedicine ; 44: 102587, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35863620

RESUMO

Nanodiscs containing sialic acid, which binds the hemagglutinin of the influenza virus, rupture the viral envelope and entrap viral ribonucleoproteins in the endolysosome. While nanodiscs are potent antiviral platforms, ganglioside GD1a containing α2,3-sialic acid does not cover all virus strains. When two nanodiscs containing different receptors 6'-sialyllactose and GD1a were mixed, one nanodisc inhibited the function of the other. A nanodisc loaded with two different receptors exhibited a biased activity toward only one receptor precluding the generation of a multifunctional nanodisc. Here, we suggest hetero di-disc, in which two nanodiscs loaded with each receptor were conjugated through protein trans-splicing for a broad-spectrum antiviral. The hetero di-disc showed strong antiviral activity in vitro and in vivo. Our results suggested that hetero di-discs not only expanded the inhibitory spectrum of nanodiscs but also enabled nanodisc-based delivery of multiple ligands without interference.


Assuntos
Influenza Humana , Antivirais/farmacologia , Hemaglutininas , Humanos , Influenza Humana/tratamento farmacológico , Ácido N-Acetilneuramínico/metabolismo
2.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208348

RESUMO

Antioxidants play a critical role in the treatment of degenerative diseases and delaying the aging of dermal tissue. Caffeic acid (CA) is a representative example of the antioxidants found in plants. However, CA is unsuitable for long-term storage because of its poor stability under ambient conditions. Caffeoyl-Pro-His-NH2 (CA-Pro-His-NH2, CA-PH) exhibits the highest antioxidant activity, free radical scavenging and lipid peroxidation inhibition activity among the histidine-containing CA-conjugated dipeptides reported to date. The addition of short peptides to CA, such as Pro-His, is assumed to synergistically enhance its antioxidative activity. In this study, several caffeoyl-prolyl-histidyl-Xaa-NH2 derivatives were synthesized and their antioxidative activities evaluated. CA-Pro-His-Asn-NH2 showed enhanced antioxidative activity and higher structural stability than CA-PH, even after long-term storage. CA-Pro-His-Asn-NH2 was stable for 3 months, its stability being evaluated by observing the changes in its NMR spectra. Moreover, the solid-phase synthetic strategy used to prepare these CA-Pro-His-Xaa-NH2 derivatives was optimized for large-scale production. We envision that CA-Pro-His-Xaa-NH2 derivatives can be used as potent dermal therapeutic agents and useful cosmetic ingredients.


Assuntos
Ácidos Cafeicos/síntese química , Ácidos Cafeicos/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Ácidos Cafeicos/química , Morte Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Peróxidos/metabolismo , Picratos/química , Espectroscopia de Prótons por Ressonância Magnética , Técnicas de Síntese em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray
3.
Small ; 16(45): e2003986, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33078539

RESUMO

An effective strategy is developed to create peptide-based hierarchical nanostructures through the meniscus-driven self-assembly in a large area and fabricate antiferroelectric devices based on these nanostructures for the first time. The diphenylalanine hierarchical nanostructures (FF-HNs) are self-assembled by vertically pulling a substrate from a diphenylalanine (FF) solution dissolved in a miscible solvent under precisely controlled conditions. Owing to the unique structural properties of FF nanostructures, including high crystallinity and α-helix structures, FF-HNs possess a net electrical dipole moment, which can be switched in an external electric field. The mass production of antiferroelectric devices based on FF-HNs can be successfully achieved by means of this biomimetic assembly technique. The devices show an evident antiferroelectric to ferroelectric transition under dark conditions, while the ferroelectricity is found to be tunable by light. Notably, it is discovered that the modulation of antiferroelectric behaviors of FF-HNs under glutaraldehyde exposure is due to the FF molecules that are transformed into cyclophenylalanine by glutaraldehyde. This work provides a stepping stone toward the mass production of self-assembled hierarchical nanostructures based on biomolecules as well as the mass fabrication of electronic devices based on biomolecular nanostructures for practical applications.


Assuntos
Nanoestruturas , Eletricidade , Peptídeos , Solventes
4.
Sensors (Basel) ; 20(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942708

RESUMO

Graphene oxide (GO)/peptide complexes as a promising disease biomarker analysis platform have been used to detect proteolytic activity by observing the turn-on signal of the quenched fluorescence upon the release of peptide fragments. However, the purification steps are often cumbersome during surface modification of nano-/micro-sized GO. In addition, it is still challenging to incorporate the specific peptides into GO with proper orientation using conventional immobilization methods based on pre-synthesized peptides. Here, we demonstrate a robust magnetic GO (MGO) fluorescence resonance energy transfer (FRET) platform based on in situ sequence-specific peptide synthesis of MGO. The magnetization of GO was achieved by co-precipitation of an iron precursor solution. Magnetic purification/isolation enabled efficient incorporation of amino-polyethylene glycol spacers and subsequent solid-phase peptide synthesis of MGO to ensure the oriented immobilization of the peptide, which was evaluated by mass spectrometry after photocleavage. The FRET peptide MGO responded to proteases such as trypsin, thrombin, and ß-secretase in a concentration-dependent manner. Particularly, ß-secretase, as an important Alzheimer's disease marker, was assayed down to 0.125 ng/mL. Overall, the MGO platform is applicable to the detection of other proteases by using various peptide substrates, with a potential to be used in an automated synthesis system operating in a high throughput configuration.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Grafite , Peptídeo Hidrolases , Peptídeos/síntese química , Óxidos
5.
Biochem Biophys Res Commun ; 517(3): 507-512, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31375212

RESUMO

Molecules interfering with lipid bilayer function exhibit strong antiviral activity against a broad range of enveloped viruses, with a lower risk of resistance development than that for viral protein-targeting drugs. Amphipathic peptides are rich sources of such membrane-interacting antivirals. Here, we report that influenza viruses were effectively inactivated by M2 AH, an amphipathic peptide derived from the M2 protein of the influenza virus. Although overall hydrophobicity () of M2 AH was not related to antiviral activity, modification of the hydrophobic moment (<µH>) of M2 AH dramatically altered the antiviral activity of this peptide. M2 MH, a derivative of M2 AH with a <µH> of 0.874, showed a half maximal inhibitory concentration (IC50) of 53.3 nM against the A/PR/8/34 strain (H1N1), which is 16-times lower than that of M2 AH. The selectivity index (IC50/CC50), where CC50 is the half maximal cytotoxic concentration, was 360 for M2 MH and 81 for M2 AH. Dynamic light scattering spectroscopy and electron microscopy revealed that M2 AH-derived peptides did not disrupt liposomes but altered the shape of viruses. This result suggests that the shape of virus envelope was closely related to its activity. Thus, we propose that deforming without rupturing the membranes may achieve a high selectivity index for peptide antivirals.


Assuntos
Antivirais/farmacologia , Membrana Celular/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas da Matriz Viral/química , Sequência de Aminoácidos , Animais , Antivirais/síntese química , Membrana Celular/química , Membrana Celular/virologia , Cães , Interações Hidrofóbicas e Hidrofílicas , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Concentração Inibidora 50 , Bicamadas Lipídicas/química , Lipossomos/química , Células Madin Darby de Rim Canino , Peptídeos/síntese química , Relação Estrutura-Atividade , Carga Viral/efeitos dos fármacos
6.
Soft Matter ; 14(16): 2996-3002, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29637974

RESUMO

We demonstrate directed nucleation of Au and ZnS patterns on templates comprised of functional peptides and an M13 bacteriophage. We discuss the control over nucleation in terms of the interplay between enhanced ion binding and reduced interfacial energy resulting from the presence of the templates.


Assuntos
Bacteriófago M13/química , Ouro/química , Nanoestruturas/química , Peptídeos/química , Engenharia de Proteínas , Sulfetos/química , Compostos de Zinco/química , Peptídeos/genética , Propriedades de Superfície
7.
Nature ; 478(7369): 364-8, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22012394

RESUMO

In nature, helical macromolecules such as collagen, chitin and cellulose are critical to the morphogenesis and functionality of various hierarchically structured materials. During tissue formation, these chiral macromolecules are secreted and undergo self-templating assembly, a process whereby multiple kinetic factors influence the assembly of the incoming building blocks to produce non-equilibrium structures. A single macromolecule can form diverse functional structures when self-templated under different conditions. Collagen type I, for instance, forms transparent corneal tissues from orthogonally aligned nematic fibres, distinctively coloured skin tissues from cholesteric phase fibre bundles, and mineralized tissues from hierarchically organized fibres. Nature's self-templated materials surpass the functional and structural complexity achievable by current top-down and bottom-up fabrication methods. However, self-templating has not been thoroughly explored for engineering synthetic materials. Here we demonstrate the biomimetic, self-templating assembly of chiral colloidal particles (M13 phage) into functional materials. A single-step process produces long-range-ordered, supramolecular films showing multiple levels of hierarchical organization and helical twist. Three distinct supramolecular structures are created by this approach: nematic orthogonal twists, cholesteric helical ribbons and smectic helicolidal nanofilaments. Both chiral liquid crystalline phase transitions and competing interfacial forces at the interface are found to be critical factors in determining the morphology of the templated structures during assembly. The resulting materials show distinctive optical and photonic properties, functioning as chiral reflector/filters and structural colour matrices. In addition, M13 phages with genetically incorporated bioactive peptide ligands direct both soft and hard tissue growth in a hierarchically organized manner. Our assembly approach provides insight into the complexities of hierarchical assembly in nature and could be expanded to other chiral molecules to engineer sophisticated functional helical-twisted structures.


Assuntos
Bacteriófago M13/fisiologia , Materiais Biomiméticos/química , Animais , Bacteriófago M13/química , Materiais Biomiméticos/síntese química , Linhagem Celular , Substâncias Macromoleculares/química , Camundongos , Rotação Ocular , Técnicas de Cultura de Tecidos/instrumentação , Vírion/química
8.
Nano Lett ; 15(11): 7697-703, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26455834

RESUMO

We report a highly selective and sensitive biosensor for the detection of an environmentally toxic molecule, decabrominated diphenyl ether (DBDE), one of the most common congeners of the polybrominated frame retardants (polybrominated diphenyl ether (PBDE)), using newly discovered DBDE peptide receptors integrated with carbon nanotube field-effect transistors (CNT-FET). The specific DBDE peptide receptor was identified using a high-throughput screening process of phage library display. The resulting binding peptide carries an interesting consensus binding pocket with two Trp-His/Asn-Trp repeats, which binds to the DBDE in a multivalent manner. We integrated the novel DBDE binding peptide onto the CNT-FET using polydiacetylene coating materials linked through cysteine-maleimide click chemistry. The resulting biosensor could detect the desired DBDE selectively with a 1 fM detection limit. Our combined approaches of selective receptor discovery, material nanocoating through click chemistry, and integration onto a sensitive CNT-FET electronic sensor for desired target chemicals will pave the way toward the rapid development of portable and easy-to-use biosensors for desired chemicals to protect our health and environment.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono/química , Peptídeos/química , Receptores de Peptídeos/isolamento & purificação , Técnicas de Visualização da Superfície Celular , Química Click , Éteres Difenil Halogenados/química , Ligação Proteica , Receptores de Peptídeos/química
9.
Nano Lett ; 15(10): 7138-45, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26392232

RESUMO

Developing hierarchically structured biomaterials with tunable chemical and physical properties like those found in nature is critically important to regenerative medicine and studies on tissue morphogenesis. Despite advances in materials synthesis and assembly processes, our ability to control hierarchical assembly using fibrillar biomolecules remains limited. Here, we developed a bioinspired approach to create collagen-like materials through directed evolutionary screening and directed self-assembly. We first synthesized peptide amphiphiles by coupling phage display-identified collagen-like peptides to long-chain fatty acids. We then assembled the amphiphiles into diverse, hierarchically organized, nanofibrous structures using directed self-assembly based on liquid crystal flow and its controlled deposition. The resulting structures sustained and directed the growth of bone cells and hydroxyapatite biominerals. We believe these self-assembling collagen-like amphiphiles could prove useful in the structural design of tissue regenerating materials.


Assuntos
Biomimética , Colágeno/química , Peptídeos/química , Células 3T3 , Sequência de Aminoácidos , Animais , Camundongos , Dados de Sequência Molecular , Conformação Proteica
10.
Biochem Biophys Res Commun ; 450(1): 831-6, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24960195

RESUMO

Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca(2+)-independent manner, while myricetin inhibits Ca(2+)-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Zíper de Leucina/efeitos dos fármacos , Fusão de Membrana/fisiologia , Neurônios/metabolismo , Polifenóis/farmacologia , Proteínas SNARE/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células PC12 , Ratos
11.
Adv Healthc Mater ; 13(14): e2302803, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329411

RESUMO

The decreasing efficacy of antiviral drugs due to viral mutations highlights the challenge of developing a single agent targeting multiple strains. Using host cell viral receptors as competitive inhibitors is promising, but their low potency and membrane-bound nature have limited this strategy. In this study, the authors show that angiotensin-converting enzyme 2 (ACE2) in a planar membrane patch can effectively neutralize all tested severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that emerged during the COVID-19 pandemic. The ACE2-incorporated membrane patch implemented using nanodiscs replicated the spike-mediated membrane fusion process outside the host cell, resulting in virus lysis, extracellular RNA release, and potent antiviral activity. While neutralizing antibodies became ineffective as the SARS-CoV-2 evolved to better penetrate host cells the ACE2-incorporated nanodiscs became more potent, highlighting the advantages of using receptor-incorporated nanodiscs for antiviral purposes. ACE2-incorporated immunodisc, an Fc fusion nanodisc developed in this study, completely protected humanized mice infected with SARS-CoV-2 after prolonged retention in the airways. This study demonstrates that the incorporation of viral receptors into immunodisc transforms the entry gate into a potent virucide for all current and future variants, a concept that can be extended to different viruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Camundongos , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Antivirais/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Chlorocebus aethiops , Células Vero , Internalização do Vírus/efeitos dos fármacos , Células HEK293 , Anticorpos Antivirais/imunologia
12.
Chem Rec ; 13(1): 43-59, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23280916

RESUMO

For the last decade, the fabrication of ordered structures of phage has been of great interest as a means of utilizing the outstanding biochemical properties of phage in developing useful materials. Combined with other organic/inorganic substances, it has been demonstrated that phage is a superior building block for fabricating various functional devices, such as the electrode in lithium-ion batteries, photovoltaic cells, sensors, and cell-culture supports. Although previous research has expanded the utility of phage when combined with genetic engineering, most improvements in device functionality have relied upon increases in efficiency owing to the compact, more densely packable unit size of phage rather than on the unique properties of the ordered nanostructures themselves. Recently, self-templating methods, which control both thermodynamic and kinetic factors during the deposition process, have opened up new routes to exploiting the ordered structural properties of hierarchically organized phage architectures. In addition, ordered phage films have exhibited unexpected functional properties, such as structural color and optical filtering. Structural colors or optical filtering from phage films can be used for optical phage-based sensors, which combine the structural properties of phage with target-specific binding motifs on the phage-coat proteins. This self-templating method may contribute not only to practical applications, but also provide insight into the fundamental study of biomacromolecule assembly in in vivo systems under complicated and dynamic conditions.


Assuntos
Bacteriófago M13/química , Eletrólitos/química , Cristais Líquidos/química , Nanofibras/química , Pontos Quânticos
13.
Sci Rep ; 13(1): 5136, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991086

RESUMO

Acyl myricetins (monopropionyl-, dipropionyl-, and monooctanoyl-myricetin, termed as MP1, MP2, and MO1, respectively) were synthesized through enzymatic or non-enzymatic esterification reaction of myricetin aglycone. Structure study indicated the hydroxyl group at C4' in B-ring was highly susceptible to acylation. Over its parental myricetin, acylated compounds showed enhanced lipophilicity (from 7.4- to 26.3-fold) and oxidative stability (from 1.9- to 3.1-fold) on the basis of logP and decay rate, respectively. MO1, presenting the physicochemical superiority compared to the others, provided lowest EC50 value of 2.51 µM on inhibition of neutrotransmitter release and CC50 value of 59.0 µM, leading to widest therapeutic window. All myricetin esters did not show any irritation toxicity when assessed with a chicken embryo assay. This study describes information on acylation of myricetin that has not yet been explored, and suggests that MO1 has membrane fusion-arresting and anti-neuroexocytotic potential for industrial application due to its enhanced biological properties.


Assuntos
Ésteres , Flavonoides , Embrião de Galinha , Animais , Flavonoides/farmacologia , Flavonoides/química , Acilação , Esterificação
14.
Microbiol Spectr ; 11(6): e0144623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811937

RESUMO

IMPORTANCE: In this study, we confirmed the binding of M13KO7 to Potato virus Y (PVY) using enzyme-linked immunosorbent assay. M13KO7 is a "bald" bacteriophage in which no recombinant antibody is displayed. M13KO7 is easy to propagate by using Escherichia coli, making this method more reasonable in economic perspective. Based on this study, we suggest that M13KO7 detection system has applicability as a novel biological tool for the detection of PVY.


Assuntos
Bacteriófagos , Potyvirus , Bacteriófagos/genética , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Doenças das Plantas
15.
Acta Biomater ; 172: 159-174, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832839

RESUMO

A versatile hydrogel was developed for enhancing bioactive wound healing by introducing the amphiphilic GHK peptide (GHK-C16) into a photo-crosslinkable tyramine-modified hyaluronic acid (HA-Ty). GHK-C16 self-assembled into GHK nanofibers (GHK NF) in HA-Ty solution, which underwent in situ gelation after the wound area was filled with precursor solution. Blue light irradiation (460-490 nm), with riboflavin phosphate as a photoinitiator, was used to trigger crosslinking, which enhanced the stability of the highly degradable hyaluronic acid and enabled sustained release of the nanostructured GHK derivatives. The hydrogels provided a microenvironment that promoted the proliferation of dermal fibroblasts and the activation of cytokines, leading to reduced inflammation and increased collagen expression during wound healing. The complexation of Cu2+ into GHK nanofibers resulted in superior wound healing capabilities compared with non-lipidated GHK peptide with a comparable level of growth factor (EGF). Additionally, nanostructured Cu-GHK improved angiogenesis through vascular endothelial growth factor (VEGF) activation, which exerted a synergistic therapeutic effect. Furthermore, in vivo wound healing experiments revealed that the Cu-GHK NF/HA-Ty hydrogel accelerated wound healing through densely packed remodeled collagen in the dermis and promoting the growth of denser fibroblasts. HA-Ty hydrogels incorporating GHK NF also possessed improved mechanical properties and a faster wound healing rate, making them suitable for advanced bioactive wound healing applications. STATEMENT OF SIGNIFICANCE: By combining photo-crosslinkable tyramine-modified hyaluronic acid with self-assembled Cu-GHK-C16 peptide nanofibers (Cu-GHK NF), the Cu-GHK NF/HA-Ty hydrogel offers remarkable advantages over conventional non-structured Cu-GHK for wound healing. It enhances cell proliferation, migration, and collagen remodeling-critical factors in tissue regeneration. The incorporation of GHK nanofibers complexed with copper ions imparts potent anti-inflammatory effects, promoting cytokine activation and angiogenesis during wound healing. The Cu-GHK NF/hydrogel's unique properties, including in situ photo-crosslinking, ensure high customization and potency in tissue regeneration, providing a cost-effective alternative to growth factors. In vivo experiments further validate its efficacy, demonstrating significant wound closure, collagen remodeling, and increased fibroblast density. Overall, the Cu-GHK NF/HA-Ty hydrogel represents an advanced therapeutic option for wound healing applications.


Assuntos
Ácido Hialurônico , Nanofibras , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hidrogéis/farmacologia , Hidrogéis/química , Cobre/química , Cicatrização/fisiologia , Colágeno/farmacologia , Colágeno/química , Peptídeos/farmacologia , Tiramina
16.
Small Methods ; 6(4): e2101516, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107214

RESUMO

Many antibody-based antivirals, including broadly neutralizing antibodies (bnAbs) against various influenza virus strains, suffer from limited potency. A booster of the antiviral activity of an antibody is expected to facilitate development of antiviral therapeutics. In this study, a nanodisc (ND), a discoidal lipid bilayer encircled by membrane scaffold proteins, is engineered to provide virucidal properties to antibodies, thereby augmenting their antiviral activity. NDs carrying the Fc-binding peptide sequence form an antibody-ND complex (ANC), which can co-endocytose into cells infected with influenza virus. ANC efficiently inhibits endosome escape of viral RNA by dual complimentary mode of action. While the antibody moiety in an ANC inhibits hemagglutinin-mediated membrane fusion, its ND moiety destroys the viral envelope using free hemagglutinins that are not captured by antibodies. Providing virus-infected host cells with the ability to self-eliminate by the synergistic effect of ANC components dramatically amplifies the antiviral efficacy of a bnAb against influenza virus. When the efficacy of ANC is assessed in mouse models, administration of ANCs dramatically reduces morbidity and mortality compared to bnAb alone. This study is the first to demonstrate the novel nanoparticle ANC and its role in combating viral infections, suggesting that ANC is a versatile platform applicable to various viruses.


Assuntos
Anticorpos Antivirais , Envelope Viral , Animais , Anticorpos Antivirais/farmacologia , Antivirais/farmacologia , Anticorpos Amplamente Neutralizantes , Hemaglutininas , Camundongos
17.
Langmuir ; 27(12): 7620-8, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21291244

RESUMO

The biogenesis of inorganic/organic composite materials such as bone typically involves the process of templated mineralization. Biomimetic synthesis of bone-like materials therefore requires the development of organic scaffolds that mediate mineralization of hydroxyapatite (HAP), the major inorganic component of bone. Using phage display, we identified a 12-residue peptide that bound to single-crystal HAP and templated the nucleation and growth of crystalline HAP mineral in a sequence- and composition-dependent manner. The sequence responsible for the mineralizing activity resembled the tripeptide repeat (Gly-Pro-Hyp) of type I collagen, a major component of bone extracellular matrix. Using a panel of synthetic peptides, we defined the structural features required for mineralizing activity. The results support a model for the cooperative noncovalent interaction of the peptide with HAP and suggest that native collagen may have a mineral-templating function in vivo. We expect this short HAP-binding peptide to be useful in the synthesis of three-dimensional bone-like materials.


Assuntos
Colágeno/química , Durapatita/química , Evolução Química , Peptídeos/química , Cristalização , Modelos Moleculares
18.
Langmuir ; 27(6): 3180-7, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21275406

RESUMO

Because of their unique optical and stimuli-response properties, polydiacetylene-based platforms have been explored as an alternative to complex mechanical and electrical sensing systems. We linked chromic responsive polydiacetylene (PDA) onto a peptide-based molecular recognition element for trinitrotoluene (TNT) molecules in order to provide a system capable of responding to the presence of a TNT target. We first identified the trimer peptide receptor that could induce chromic changes on a PDA backbone. We then investigated the multivalent interactions between TNT and our peptide-based receptor by nuclear magnetic resonance (NMR) spectroscopy. We further characterized various parameters that affected the conjugated PDA system and hence the chromic response, including the size of end-group motifs, the surface density of receptors, and the length of alkane side chains. Taking these necessary design parameters into account, we demonstrated a modular system capable of transducing small-molecule TNT binding into a detectable signal. Our conjugated PDA-based sensor coupled with molecular recognition elements has already proven useful recently in the development of another sensitive and selective electronic sensor, though we expect that our results will also be valuable in the design of colorimetric sensors for small-molecule detection.


Assuntos
Peptídeos/química , Polímeros/química , Poli-Inos/química , Trinitrotolueno/análise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Polímero Poliacetilênico
19.
Sci Rep ; 11(1): 979, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441577

RESUMO

Influenza, one of the most contagious and infectious diseases, is predominantly transmitted through aerosols, leading to the development of filter-based protective equipment. Though the currently available filters are effective at removing submicron-sized particulates, filter materials with enhanced virus-capture efficiency are still in demand. Coating or chemically modifying filters with molecules capable of binding influenza viruses has received attention as a promising approach for the production of virus-capturing filters. For this purpose, tannic acid (TA), a plant-derived polyphenol, is a promising molecule for filter functionalization because of its antiviral activities and ability to serve as a cost-efficient adhesive for various materials. This study demonstrates the facile preparation of TA-functionalized high-efficiency particulate air (HEPA) filter materials and their efficiency in influenza virus capture. Polypropylene HEPA filter fabrics were coated with TA via a dipping/washing process. The TA-functionalized HEPA filter (TA-HF) exhibits a high in-solution virus capture efficiency of up to 2,723 pfu/mm2 within 10 min, which is almost two orders of magnitude higher than that of non-functionalized filters. This result suggests that the TA-HF is a potent anti-influenza filter that can be used in protective equipment to prevent the spread of pathogenic viruses.


Assuntos
Filtros de Ar/virologia , Filtração/instrumentação , Orthomyxoviridae/química , Taninos/química , Aerossóis/química , Poeira/prevenção & controle , Filtração/métodos , Tamanho da Partícula , Têxteis/virologia
20.
ACS Appl Mater Interfaces ; 13(31): 36757-36768, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319090

RESUMO

Lipid-bilayer nanodiscs (NDs) wrapped in membrane scaffold proteins (MSPs) have primarily been used to study membrane proteins of interest in a physiological environment. Recently, NDs have been employed in broader applications including drug delivery, cancer immunotherapy, bio-imaging, and therapeutic virucides. Here, we developed a method to synthesize a dimeric nanodisc, whose MSPs are circularly end-spliced, with long-term thermal stability and resistance to aggregation. The end-spliced nanodiscs (esNDs) were assembled using MSPs that were self-circularized inside the cytoplasm ofEscherichia colivia highly efficient protein trans-splicing. The esNDs demonstrated a consistent size and 4-5-fold higher stability against heat and aggregation than conventional NDs. Moreover, cysteine residues on trans-spliced circularized MSPs allowed us to modulate the formation of either monomeric nanodiscs (essNDs) or dimeric nanodiscs (esdNDs) by controlling the oxidation/reduction conditions and lipid-to-protein ratios. When the esdNDs were used to prepare an antiviral nanoperforator that induced the disruption of the viral membrane upon contact, antiviral activity was dramatically increased, suggesting that the dimerization of nanodiscs led to cooperativity between linked nanodiscs. We expect that controllable structures, long-term stability, and aggregation resistance of esNDs will aid the development of novel versatile membrane-mimetic nanomaterials with flexible designs and improved therapeutic efficacy.


Assuntos
Antivirais/uso terapêutico , Proteínas de Membrana/uso terapêutico , Nanoestruturas/uso terapêutico , Animais , Antivirais/química , Escherichia coli/genética , Feminino , Bicamadas Lipídicas/química , Bicamadas Lipídicas/uso terapêutico , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Orthomyxoviridae/efeitos dos fármacos , Trans-Splicing , Envelope Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA