Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(19): 9417-9422, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019073

RESUMO

Faithful chromosome segregation during meiosis I depends upon the formation of connections between homologous chromosomes. Crossovers between homologs connect the partners, allowing them to attach to the meiotic spindle as a unit, such that they migrate away from one another at anaphase I. Homologous partners also become connected by pairing of their centromeres in meiotic prophase. This centromere pairing can promote proper segregation at anaphase I of partners that have failed to become joined by a crossover. Centromere pairing is mediated by synaptonemal complex (SC) proteins that persist at the centromere when the SC disassembles. Here, using mouse spermatocyte and yeast model systems, we tested the role of shugoshin in promoting meiotic centromere pairing by protecting centromeric synaptonemal components from disassembly. The results show that shugoshin protects the centromeric SC in meiotic prophase and, in anaphase, promotes the proper segregation of partner chromosomes that are not linked by a crossover.


Assuntos
Anáfase/fisiologia , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Segregação de Cromossomos/fisiologia , Prófase/fisiologia , Espermatócitos/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Centrômero/genética , Masculino , Camundongos , Camundongos Knockout , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermatócitos/citologia , Fuso Acromático/genética , Fuso Acromático/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
2.
PLoS Genet ; 14(8): e1007513, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30091974

RESUMO

In meiosis I, homologous chromosomes segregate away from each other-the first of two rounds of chromosome segregation that allow the formation of haploid gametes. In prophase I, homologous partners become joined along their length by the synaptonemal complex (SC) and crossovers form between the homologs to generate links called chiasmata. The chiasmata allow the homologs to act as a single unit, called a bivalent, as the chromosomes attach to the microtubules that will ultimately pull them away from each other at anaphase I. Recent studies, in several organisms, have shown that when the SC disassembles at the end of prophase, residual SC proteins remain at the homologous centromeres providing an additional link between the homologs. In budding yeast, this centromere pairing is correlated with improved segregation of the paired partners in anaphase. However, the causal relationship of prophase centromere pairing and subsequent disjunction in anaphase has been difficult to demonstrate as has been the relationship between SC assembly and the assembly of the centromere pairing apparatus. Here, a series of in-frame deletion mutants of the SC component Zip1 were used to address these questions. The identification of a separation-of-function allele that disrupts centromere pairing, but not SC assembly, has made it possible to demonstrate that centromere pairing and SC assembly have mechanistically distinct features and that the centromere pairing function of Zip1 drives disjunction of the paired partners in anaphase I.


Assuntos
Centrômero/metabolismo , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Alelos , Anáfase/genética , Pareamento Cromossômico , Segregação de Cromossomos , Meiose , Proteínas Nucleares/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Complexo Sinaptonêmico/metabolismo
3.
Genes Dev ; 27(19): 2139-46, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24115770

RESUMO

In meiosis I, homologous chromosomes pair and then attach to the spindle so that the homologs can be pulled apart at anaphase I. The segregation of homologs before pairing would be catastrophic. We describe two mechanisms that prevent this. First, in early meiosis, Ipl1, the budding yeast homolog of the mammalian Aurora B kinase, triggers shedding of a kinetochore protein, preventing microtubule attachment. Second, Ipl1 localizes to the spindle pole bodies (SPBs), where it blocks spindle assembly. These processes are reversed upon expression of Ndt80. Previous studies have shown that Ndt80 is expressed when homologs have successfully partnered, and this triggers a rise in the levels of cyclin-dependent kinase (CDK). We found that CDK phosphorylates Ipl1, delocalizing it from SPBs, triggering spindle assembly. At the same time, kinetochores reassemble. Thus, dual mechanisms controlled by Ipl1 and Ntd80 coordinate chromosome and spindle behaviors to prevent the attachment of unpartnered chromosomes to the meiotic spindle.


Assuntos
Aurora Quinases/metabolismo , Segregação de Cromossomos/fisiologia , Meiose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Aurora Quinases/genética , Segregação de Cromossomos/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Cinetocoros/metabolismo , Meiose/genética , Microtúbulos/metabolismo , Fosforilação , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo
4.
Chromosoma ; 128(3): 355-367, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31165256

RESUMO

In meiosis, crossovers between homologous chromosomes link them together. This enables them to attach to microtubules of the meiotic spindle as a unit, such that the homologs will be pulled away from one another at anaphase I. Homologous pairs can sometimes fail to become linked by crossovers. In some organisms, these non-exchange partners are still able to segregate properly. In several organisms, associations between the centromeres of non-exchange partners occur in meiotic prophase. These associations have been proposed to promote segregation in meiosis I. But it is unclear how centromere pairing could promote subsequent proper segregation. Here we report that meiotic centromere pairing of chromosomes in mouse spermatocytes allows the formation of an association between chromosome pairs. We find that heterochromatin regions of homologous centromeres remain associated even after centromere-pairing dissolves. Our results suggest the model that, in mouse spermatocytes, heterochromatin maintains the association of homologous centromeres in the absence crossing-over.


Assuntos
Centrômero , Pareamento Cromossômico , Segregação de Cromossomos , Heterocromatina , Meiose , Espermatócitos , Animais , Masculino , Camundongos , Prófase , Recombinação Genética
5.
Curr Biol ; 34(10): 2085-2093.e6, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670094

RESUMO

Proper chromosome segregation in meiosis I relies on the formation of connections between homologous chromosomes. Crossovers between homologs provide a connection that allows them to attach correctly to the meiosis I spindle. Tension is transmitted across the crossover when the partners attach to microtubules from opposing poles of the spindle. Tension stabilizes microtubule attachments that will pull the partners toward opposite poles at anaphase. Paradoxically, in many organisms, non-crossover partners segregate correctly. The mechanism by which non-crossover partners become bioriented on the meiotic spindle is unknown. Both crossover and non-crossover partners pair their centromeres early in meiosis (prophase). In budding yeast, centromere pairing is correlated with subsequent correct segregation of the partners. The mechanism by which centromere pairing, in prophase, promotes later correct attachment of the partners to the metaphase spindle is unknown. We used live cell imaging to track the biorientation process of non-crossover chromosomes. We find that centromere pairing allows the establishment of connections between the partners that allows their later interdependent attachment to the meiotic spindle using tension-sensing biorientation machinery. Because all chromosome pairs experience centromere pairing, our findings suggest that crossover chromosomes also utilize this mechanism to achieve maximal segregation fidelity.


Assuntos
Centrômero , Segregação de Cromossomos , Meiose , Saccharomyces cerevisiae , Centrômero/metabolismo , Segregação de Cromossomos/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Pareamento Cromossômico , Cromossomos Fúngicos/genética , Microtúbulos/metabolismo
6.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36712123

RESUMO

Tumor cell lines with elevated chromosome numbers frequently have correlated elevations of Mps1 expression and these tumors are more dependent on Mps1 activity for their survival than control cell lines. Mps1 is a conserved kinase involved in controlling aspects of chromosome segregation in mitosis and meiosis. The mechanistic explanation for the Mps1-addiction of aneuploid cells is unknown. To address this question, we explored Mps1-dependence in yeast cells with increased sets of chromosomes. These experiments revealed that in yeast, increasing ploidy leads to delays and failures in orienting chromosomes on the mitotic spindle. Yeast cells with elevated numbers of chromosomes proved vulnerable to reductions of Mps1 activity. Cells with reduced Mps1 activity exhibit an extended prometaphase with longer spindles and delays in orienting the chromosomes. One known role of Mps1 is in recruiting Bub1 to the kinetochore in meiosis. We found that the Mps1-addiction of polyploid yeast cells is due in part to its role in Bub1 recruitment. Together, the experiments presented here demonstrate that increased ploidy renders cells more dependent on Mps1 for orienting chromosomes on the spindle. The phenomenon described here may be relevant in understanding why hyper-diploid cancer cells exhibit elevated reliance on Mps1 expression for successful chromosome segregation.

7.
PLoS Genet ; 5(12): e1000771, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20011112

RESUMO

In meiosis I, homologous chromosomes become paired and then separate from one another to opposite poles of the spindle. In humans, errors in this process are a leading cause of birth defects, mental retardation, and infertility. In most organisms, crossing-over, or exchange, between the homologous partners provides a link that promotes their proper, bipolar, attachment to the spindle. Attachment of both partners to the same pole can sometimes be corrected during a delay that is triggered by the spindle checkpoint. Studies of non-exchange chromosomes have shown that centromere pairing serves as an alternative to exchange by orienting the centromeres for proper microtubule attachment. Here, we demonstrate a new role for the synaptonemal complex protein Zip1. Zip1 localizes to the centromeres of non-exchange chromosomes in pachytene and mediates centromere pairing and segregation of the partners at meiosis I. Exchange chromosomes were also found to experience Zip1-dependent pairing at their centromeres. Zip1 was found to persist at centromeres, after synaptonemal complex disassembly, remaining there until microtubule attachment. Disruption of this centromere pairing, in spindle checkpoint mutants, randomized the segregation of exchange chromosomes. These results demonstrate that Zip1-mediated pairing of exchange chromosome centromeres promotes an initial, bipolar attachment of microtubules. This activity of Zip1 lessens the load on the spindle checkpoint, greatly reducing the chance that the cell will exit the checkpoint delay with an improperly oriented chromosome pair. Thus exchange, the spindle checkpoint, and centromere pairing are complementary mechanisms that ensure the proper segregation of homologous partners at meiosis I.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Centrômero , Meiose/fisiologia , Humanos
8.
Genetics ; 205(2): 657-671, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27913618

RESUMO

In meiosis I, chromosomes become paired with their homologous partners and then are pulled toward opposite poles of the spindle. In the budding yeast, Saccharomyces cerevisiae, in early meiotic prophase, centromeres are observed to associate in pairs in a homology-independent manner; a process called centromere coupling. Later, as homologous chromosomes align, their centromeres associate in a process called centromere pairing. The synaptonemal complex protein Zip1 is necessary for both types of centromere association. We aimed to test the role of centromere coupling in modulating recombination at centromeres, and to test whether the two types of centromere associations depend upon the same sets of genes. The zip1-S75E mutation, which blocks centromere coupling but no other known functions of Zip1, was used to show that in the absence of centromere coupling, centromere-proximal recombination was unchanged. Further, this mutation did not diminish centromere pairing, demonstrating that these two processes have different genetic requirements. In addition, we tested other synaptonemal complex components, Ecm11 and Zip4, for their contributions to centromere pairing. ECM11 was dispensable for centromere pairing and segregation of achiasmate partner chromosomes; while ZIP4 was not required for centromere pairing during pachytene, but was required for proper segregation of achiasmate chromosomes. These findings help differentiate the two mechanisms that allow centromeres to interact in meiotic prophase, and illustrate that centromere pairing, which was previously shown to be necessary to ensure disjunction of achiasmate chromosomes, is not sufficient for ensuring their disjunction.


Assuntos
Centrômero/genética , Pareamento Cromossômico , Meiose , Saccharomyces cerevisiae/genética , Complexo Sinaptonêmico/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Sinaptonêmico/metabolismo
9.
Mol Biol Cell ; 26(17): 2986-3000, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26157162

RESUMO

In mitosis, the centromeres of sister chromosomes are pulled toward opposite poles of the spindle. In meiosis I, the opposite is true: the sister centromeres move together to the same pole, and the homologous chromosomes are pulled apart. This change in segregation patterns demands that between the final mitosis preceding meiosis and the first meiotic division, the kinetochores must be restructured. In budding yeast, unlike mammals, kinetochores are largely stable throughout the mitotic cycle. In contrast, previous work with budding and fission yeast showed that some outer kinetochore proteins are lost in early meiosis. We use quantitative mass spectrometry methods and imaging approaches to explore the kinetochore restructuring process that occurs in meiosis I in budding yeast. The Ndc80 outer kinetochore complex, but not other subcomplexes, is shed upon meiotic entry. This shedding is regulated by the conserved protein kinase Ipl1/Aurora-B and promotes the subsequent assembly of a kinetochore that will confer meiosis-specific segregation patterns on the chromosome.


Assuntos
Aurora Quinases/metabolismo , Cinetocoros/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Aurora Quinases/genética , Ciclo Celular/fisiologia , Pontos de Checagem do Ciclo Celular/genética , Centrômero/metabolismo , Segregação de Cromossomos , Cinetocoros/enzimologia , Cinetocoros/metabolismo , Meiose/fisiologia , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
10.
Mol Biol Cell ; 21(11): 1799-809, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20375150

RESUMO

A period of pairing between nonhomologous centromeres occurs early in meiosis in a diverse collection of organisms. This early, homology-independent, centromere pairing, referred to as centromere coupling in budding yeast, gives way to an alignment of homologous centromeres as homologues synapse later in meiotic prophase. The regulation of centromere coupling and its underlying mechanism have not been elucidated. In budding yeast, the protein Zip1p is a major component of the central element of the synaptonemal complex in pachytene of meiosis, and earlier, is essential for centromere coupling. The experiments reported here demonstrate that centromere coupling is mechanistically distinct from synaptonemal complex assembly. Zip2p, Zip3p, and Red1p are all required for the assembly of Zip1 into the synaptonemal complex but are dispensable for centromere coupling. However, the meiotic cohesin Rec8p is required for centromere coupling. Loading of meiotic cohesins to centromeres and cohesin-associated regions is required for the association of Zip1 with these sites, and the association of Zip1 with the centromeres then promotes coupling. These findings reveal a mechanism that promotes associations between centromeres before the assembly of the synaptonemal complex, and they demonstrate that chromosomes are preloaded with Zip1p in a manner that may promote synapsis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Prófase Meiótica I/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Sinaptonêmico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Coesinas
11.
J Biol Chem ; 282(8): 5195-200, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17189266

RESUMO

Xylosyltransferase (XylT) catalyzes the initial enzymatic reaction in the glycosaminoglycan assembly pathway for proteoglycan biosynthesis. Its activity is thought to be rate-limiting. Two xylosyltransferases have been found using genomic analyses, and one of these, XylT1, has been shown to have xylosyltransferase activity. On the other hand, the less studied XylT2 in recombinant form lacks xylosyltransferase activity and has no known function. Wild-type Chinese hamster ovary cells express abundant Xylt2 mRNA levels and lack detectable Xylt1 mRNA levels. Analysis of a previously described Chinese hamster ovary cell xylosyltransferase mutant (psgA-745) shows that it harbors an Xylt2 nonsense mutation and fails to assemble glycosaminoglycans onto recombinant biglycan. Transfection of this cell line with a murine Xylt2 minigene results in the production of recombinant chondroitin sulfate-modified biglycan core protein and restoration of fibroblast growth factor binding to cell surface-associated heparan sulfate. Expression analyses on 10 different human transformed cell lines detect exclusive XYLT2 expression in two and co-expression of XYLT1 and XYLT2 in the others but at disparate ratios where XYLT2 expression is greater than XYLT1 in most cell lines. These results indicate that XylT2 has a significant role in proteoglycan biosynthesis and that cell type may control which family member is utilized.


Assuntos
Condroitina/biossíntese , Heparitina Sulfato/biossíntese , Pentosiltransferases/metabolismo , Animais , Células CHO , Condroitina/genética , Códon sem Sentido , Cricetinae , Cricetulus , Expressão Gênica , Heparitina Sulfato/genética , Humanos , Camundongos , Pentosiltransferases/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transfecção , UDP Xilose-Proteína Xilosiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA