Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 256: 109873, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31822455

RESUMO

The pollutant removal performance of traditional horizontal subsurface flow (HSSF) constructed wetlands (CWs) is limited because of the dissolved oxygen (DO) supply is insufficient. The aeration of HSSF CWs usually improves their pollutant removal performance, but a high DO induces the accumulation of nitrate-nitrogen (NO3--N) and suppresses the improvement of total nitrogen (TN) removal. In this study, an integrated solution that involved in-tank front aeration and internal recirculation (FAIR) was used to improve the pollutant removal performance of HSSF CWs. Based on the experimental results, the FAIR system significantly increased the removal efficiencies of biochemical oxygen demand (BOD) from 53.8-76.0% to 82.0-91.7% and reduced the BOD concentration in the effluent to below 10 mg L-1. The removal efficiency of ammonia-nitrogen (NH3-N) increased from 15.1-78.3% to 98.5-98.6% while the removal efficiencies of the total Kjeldahl nitrogen (TKN) of the control and FAIR HSSF CWs were 18.2-77.1% and 93.5-94.3%, respectively. HSSF CWs with FAIR outperformed aerated HSSF CWs in the removal of NH3-N and TKN. The effects of two recirculation flow ratios (Rr = recirculation flow rate/influent flow rate), 14.3 and 3.0, on the improvement of pollutant removal performance were investigated. The lower Rr did not significantly affect the improvement of BOD, NH3-N, and TKN, but a higher Rr resulted in more severe accumulation of NO3--N. The removal efficiency of TN in control HSSF CWs ranged from 20.4% to 75.5%, and in the FAIR HSSF CW was 71.6% for Rr = 14.3 and 81.3% for Rr = 3.0. However, the FAIR system did not enhance the removal performance of total phosphorus, suggesting that the DO level and internal recirculation were not dominant mechanisms for the removal of phosphorous. The easy maintenance of the FAIR system made it a superior modification for improving the pollutant removal performance of HSSF CWs.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Amônia , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
2.
Chemosphere ; 307(Pt 2): 135896, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35961454

RESUMO

The incineration of municipal solid waste has been important in waste management, but it raises another environmental issue concerning residue treatment. This study describes an innovative use of naturally aged incineration bottom ash (AIBA) as an alternative substrate for horizontal subsurface flow (HSSF) constructed wetlands (CW). Although experimental results from a period lasting for 396 days only revealed slightly higher removal ratios in HSSF with AIBA (HSSF-E) than in HSSF-traditional pebble beds (HSSF-C), increasing from 67% to 76% for BOD, 44%-51% for TKN, 47%-54% for NH3-N, and 44%-52% for TN. The data indicate that the use of AIBA in HSSF CW can achieves a certain removal efficiency of BOD and nitrogen species. Interestingly, the total phosphorus removal rates also increased significantly from 20% in HSSF-C to 36% in HSSF-E. These observations on the use of AIBA in HSSF CW confirmed that AIBA is a suitable alternative for use as a substrate for HSSF CWs and identified an additional way to reuse incineration bottom ash. Design criteria for a CW using AIBA as a partial substrate is proposed to improve the pollutant removal performance of HSSF CWs.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Cinza de Carvão , Incineração , Nitrogênio/análise , Fósforo , Resíduos Sólidos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
3.
Chemosphere ; 63(1): 22-30, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16289285

RESUMO

Taiwan is a densely populated and developed country with more than 97% of energy consumption supplied by imported fuels. Greenhouse gas emissions are thus becoming significant environmental issues in the country. Using the Intergovernmental Panel on Climate Change (IPCC) recommended methodologies, anthropogenic emissions of nitrous oxide (N2O) in Taiwan during 2000-2003 were estimated to be around 41 thousand metric tons annually. About 87% of N2O emissions come from agriculture, 7% from the energy sector, 3% from industrial processes sector, 3% from waste sector. On the basis of N2O emissions in 2000, projections for the year 2010 show that emissions were estimated to decline by about 6% mainly due to agricultural changes in response to the entry of WTO in 2002. In contrast to projections for the year 2020, N2O emissions were projected to grow by about 17%. This is based on the reasonable scenario that a new adipic acid/nitric acid plant will be probably started after 2010.


Assuntos
Poluentes Atmosféricos/análise , Óxido Nitroso/análise , Gerenciamento de Resíduos , Agricultura , Animais , Clima , Efeito Estufa , Humanos , Indústrias , Centrais Elétricas , Taiwan , Emissões de Veículos , Volatilização
4.
Environ Sci Pollut Res Int ; 23(1): 535-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26315590

RESUMO

This study attempted to purify eutrophic landscape water under a low pollutant concentration and high hydraulic volume loading using an embedded subsurface flow (SSF) constructed wetland (CW). Three species of aquatic plants (i.e., Cyperus alternifolius subsp. flabelliformis, Canna indica, and Hydrocotyle verticillata) were found to be conducive to the requirements of purifying the low-polluted water. Field results of nearly 2 years of experiments showed that SSF CW purified the eutrophic water and maintained the landscape water in a visibly clear condition. In an environment approaching the SSF CW background concentration, pollutant removal processes were divided into modulation and optimum performance periods. Average concentrations of biochemical oxygen demand (BOD), ammonium-nitrogen (NH4 (+)-N), and total phosphorous (TP) in the optimum performance period were 0.69-1.00, 0.35-1.42, and 0.19-0.23 mg/L, respectively. Almost 500 days of BOD and NH4 (+)-N removals were necessary to perform optimally. A shorter period, 350 days, was required for TP optimum removal. This feature of two stage removals was not found in chlorophyll-a (Chl-a) and suspended solids (SS), whose averages were 11.86-17.98 and 13.30 µg/L, respectively. Filter cleaning and water replacement were unnecessary, while only water recharging was needed to compensate for the water lost by evapotranspiration. The field SSF CW has maintained its performance level for over 7 years.


Assuntos
Centella/metabolismo , Cyperus/metabolismo , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/metabolismo , Zingiberales/metabolismo , Biodegradação Ambiental , Meio Ambiente , Nitrogênio/metabolismo , Fósforo/metabolismo , Áreas Alagadas
5.
Waste Manag ; 33(2): 268-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23238521

RESUMO

To establish an empirical model for predicting a lower heating value (LHV) easily and economically by multiple regression analysis. A wet-based physical components model (WBPCM) was developed and based on physical component analysis without dewatering. Based on 497 samples of municipal solid waste (MSW) gathered from 14 incinerators in western parts of Taiwan from 2002 to 2009. The proposed model was verified by independent samples from other incinerators through parameters multiple correlation coefficients (R), relative percentage deviation (RPD) and mean absolute percentage error (MAPE). Experimental results indicated that R, RPD and MAPE were 0.976, 17.1 and 17.7, respectively. This finding implies that LHV predicted by the WBPCM could well explain the LHV characteristics of MSW. The WBPCM was also compared with existing prediction models of LHV on a dry basis. While more accurately predicting LHV predicting than those models based on proximate analysis, the WBPCM was comparable with models based on physical component analysis in term of RPD and MAPE. Experimental results further indicated that the prediction accuracy of the WBPCM varied with MSW moisture parabolically. No specific relation was observed in the results of the previous prediction model. The accuracy of the WBPCM was almost approached to that of ultimate analysis in moisture ranging from 40% to 55%. The model was applicable within this moisture range. We conclude that the WBPCM is a faster and more economical model for LHV predictions with comparable accuracy than those models based on physical component analysis. The proposed WBPCM is highly promising for use in designing and operating incinerators.


Assuntos
Incineração/métodos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Temperatura Alta , Modelos Teóricos , Análise de Regressão , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA