Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(3): 1258-1266, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36788678

RESUMO

Tissue engineering offers attractive strategies to develop three-dimensional scaffolds mimicking the complex hierarchical structure of the native bone. The bone is formed by cells incorporated in a molecularly organized extracellular matrix made of an inorganic phase, called biological apatite, and an organic phase mainly made of collagen and noncollagenous macromolecules. Although many strategies have been developed to replicate the complexity of bone at the nanoscale in vitro, a critical challenge has been to control the orchestrated process of mineralization promoted by bone cells in vivo and replicate the anatomical and biological properties of native bone. In this study, we used type I collagen to fabricate mineralized scaffolds mimicking the microenvironment of the native bone. The sulfated polysaccharide κ-carrageenan was added to the scaffolds to fulfill the role of noncollagenous macromolecules in the organization and mineralization of the bone matrix and cell adhesion. Scanning electron microscopy images of the surface of the collagen/κ-carrageenan scaffolds showed the presence of a dense and uniform network of intertwined fibrils, while images of the scaffolds' lateral sides showed the presence of collagen fibrils with a parallel alignment, which is characteristic of dense connective tissues. MC3T3-E1 osteoblasts were cultured in the collagen scaffolds and were viable after up to 7 days of culture, both in the absence and in the presence of κ-carrageenan. The presence of κ-carrageenan in the collagen scaffolds stimulated the maturation of the cells to a mineralizing phenotype, as suggested by the increased expression of key genes related to bone mineralization, including alkaline phosphatase (Alp), bone sialoprotein (Bsp), osteocalcin (Oc), and osteopontin (Opn), as well as the ability to mineralize the extracellular matrix after 14 and 21 days of culture. Taken together, the results described in this study shed light on the potential use of collagen/κ-carrageenan scaffolds to study the role of the structural organization of bone-mimetic synthetic matrices in cell function.


Assuntos
Biomimética , Calcificação Fisiológica , Carragenina , Colágeno/química , Engenharia Tecidual/métodos , Osteoblastos , Alicerces Teciduais/química
2.
Eur Biophys J ; 52(8): 721-733, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938350

RESUMO

Matrix vesicles are a special class of extracellular vesicles thought to actively contribute to both physiologic and pathologic mineralization. Proteomic studies have shown that matrix vesicles possess high amounts of annexin A5, suggesting that the protein might have multiple roles at the sites of calcification. Currently, Annexin A5 is thought to promote the nucleation of apatitic minerals close to the inner leaflet of the matrix vesicles' membrane enriched in phosphatidylserine and Ca2+. Herein, we aimed at unravelling a possible additional role of annexin A5 by investigating the ability of annexin A5 to adsorb on matrix-vesicle biomimetic liposomes and Langmuir monolayers made of dipalmitoylphosphatidylserine (DPPS) and dipalmitoylphosphatidylcholine (DPPC) in the absence and in the presence of Ca2+. Differential scanning calorimetry and dynamic light scattering measurements showed that Ca2+ at concentrations in the 0.5-2.0 mM range induced the aggregation of liposomes probably due to the formation of DPPS-enriched domains. However, annexin A5 avoided the aggregation of liposomes at Ca2+ concentrations lower than 1.0 mM. Surface pressure versus surface area isotherms showed that the adsorption of annexin A5 on the monolayers made of a mixture of DPPC and DPPS led to a reduction in the area of excess compared to the theoretical values, which confirmed that the protein favored attractive interactions among the membrane lipids. The stabilization of the lipid membranes by annexin A5 was also validated by recording the changes with time of the surface pressure. Finally, fluorescence microscopy images of lipid monolayers revealed the formation of spherical lipid-condensed domains that became unshaped and larger in the presence of annexin A5. Our data support the model that annexin A5 in matrix vesicles is recruited at the membrane sites enriched in phosphatidylserine and Ca2+ not only to contribute to the intraluminal mineral formation but also to stabilize the vesicles' membrane and prevent its premature rupture.


Assuntos
Anexinas , Lipossomos , Anexina A5/química , Anexina A5/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Biomimética , Proteômica , Cálcio/metabolismo
3.
Purinergic Signal ; 19(2): 353-366, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35870033

RESUMO

Matrix vesicles (MVs) are a special class of extracellular vesicles released by mineralizing cells during bone and tooth mineralization that initiate the precipitation of apatitic minerals by regulating the extracellular ratio between inorganic phosphate (Pi), a calcification promoter, and pyrophosphate (PPi), a calcification inhibitor. The Pi/PPi ratio is thought to be controlled by two ecto-phosphatases present on the outer leaflet of the MVs' membrane: ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) that produces PPi as well as Pi from ATP and tissue-nonspecific alkaline phosphatase (TNAP) that hydrolyzes both ATP and PPi to generate Pi. However, if and how these enzymes act in concert in MVs are still unclear. Herein, we investigated the role of NPP1 and TNAP in ATP hydrolysis during MV-mediated biomineralization using proteoliposomes as a biomimetic model for MVs. Proteoliposomes composed by 1,2-dipalmitoylphosphatidylcholine (DPPC) and harboring NPP1 alone, TNAP alone, or both together at different molar ratios (1:1, 10:1, and 1:10) were fabricated. After 48 h of incubation with ATP, TNAP-containing proteoliposomes consumed more ATP than NPP1-containing vesicles (270 and 210 nmol, respectively). Both types of vesicles comparatively formed ADP (205 and 201 nmol, respectively), while NPP1-containing vesicles hydrolyzed AMP less efficiently than TNAP-containing proteoliposomes (10 and 25 nmol, respectively). In vitro mineralization assays showed that in the presence of ATP, TNAP-harboring proteoliposomes mineralized through a sigmoidal single-step process, while NPP1-harboring vesicles displayed a two-step mineralization process. ATR-FTIR analyses showed that the minerals produced by TNAP-harboring proteoliposomes were structurally more similar to hydroxyapatite than those produced by NPP1-harboring vesicles. Our results with proteoliposomes indicate that the pyrophosphohydrolase function of NPP1 and the phosphohydrolase activity of TNAP act synergistically to produce a Pi/PPi ratio conducive to mineralization and the synergism is maximal when the two enzymes are present at equimolar concentrations. The significance of these findings for hypophosphatasia is discussed.


Assuntos
Fosfatase Alcalina , Calcinose , Humanos , Fosfatase Alcalina/metabolismo , Biomineralização , Osso e Ossos/metabolismo , Minerais , Trifosfato de Adenosina
4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806282

RESUMO

Inspired by the composition and confined environment provided by collagen fibrils during bone formation, this study aimed to compare two different strategies to synthesize bioactive hybrid membranes and to assess the role the organic matrix plays as physical confinement during mineral phase deposition. The hybrid membranes were prepared by (1) incorporating calcium phosphate in a biopolymeric membrane for in situ hydroxyapatite (HAp) precipitation in the interstices of the biopolymeric membrane as a confined environment (Methodology 1) or (2) adding synthetic HAp nanoparticles (SHAp) to the freshly prepared biopolymeric membrane (Methodology 2). The biopolymeric membranes were based on hydrolyzed collagen (HC) and chitosan (Cht) or κ-carrageenan (κ-carr). The hybrid membranes presented homogeneous and continuous dispersion of the mineral particles embedded in the biopolymeric membrane interstices and enhanced mechanical properties. The importance of the confined spaces in biomineralization was confirmed by controlled biomimetic HAp precipitation via Methodology 1. HAp precipitation after immersion in simulated body fluid attested that the hybrid membranes were bioactive. Hybrid membranes containing Cht were not toxic to the osteoblasts. Hybrid membranes added with silver nanoparticles (AgNPs) displayed antibacterial action against different clinically important pathogenic microorganisms. Overall, these results open simple and promising pathways to develop a new generation of bioactive hybrid membranes with controllable degradation rates and antimicrobial properties.


Assuntos
Quitosana , Nanopartículas Metálicas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Quitosana/metabolismo , Quitosana/farmacologia , Colágeno/metabolismo , Durapatita/metabolismo , Osteoblastos/metabolismo , Prata/metabolismo , Prata/farmacologia
5.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499456

RESUMO

Matrix vesicles (MVs) contain the whole machinery necessary to initiate apatite formation in their lumen. We suspected that, in addition to tissue-nonspecific alkaline phosphatase (TNAP), Na,K,-ATPase (NKA) could be involved in supplying phopshate (Pi) in the early stages of MV-mediated mineralization. MVs were extracted from the growth plate cartilage of chicken embryos. Their average mean diameters were determined by Dynamic Light Scattering (DLS) (212 ± 19 nm) and by Atomic Force Microcopy (AFM) (180 ± 85 nm). The MVs had a specific activity for TNAP of 9.2 ± 4.6 U·mg-1 confirming that the MVs were mineralization competent. The ability to hydrolyze ATP was assayed by a colorimetric method and by 31P NMR with and without Levamisole and SBI-425 (two TNAP inhibitors), ouabain (an NKA inhibitor), and ARL-67156 (an NTPDase1, NTPDase3 and Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) competitive inhibitor). The mineralization profile served to monitor the formation of precipitated calcium phosphate complexes, while IR spectroscopy allowed the identification of apatite. Proteoliposomes containing NKA with either dipalmitoylphosphatidylcholine (DPPC) or a mixture of 1:1 of DPPC and dipalmitoylphosphatidylethanolamine (DPPE) served to verify if the proteoliposomes were able to initiate mineral formation. Around 69-72% of the total ATP hydrolysis by MVs was inhibited by 5 mM Levamisole, which indicated that TNAP was the main enzyme hydrolyzing ATP. The addition of 0.1 mM of ARL-67156 inhibited 8-13.7% of the total ATP hydrolysis in MVs, suggesting that NTPDase1, NTPDase3, and/or NPP1 could also participate in ATP hydrolysis. Ouabain (3 mM) inhibited 3-8% of the total ATP hydrolysis by MVs, suggesting that NKA contributed only a small percentage of the total ATP hydrolysis. MVs induced mineralization via ATP hydrolysis that was significantly inhibited by Levamisole and also by cleaving TNAP from MVs, confirming that TNAP is the main enzyme hydrolyzing this substrate, while the addition of either ARL-6715 or ouabain had a lesser effect on mineralization. DPPC:DPPE (1:1)-NKA liposome in the presence of a nucleator (PS-CPLX) was more efficient in mineralizing compared with a DPPC-NKA liposome due to a better orientation of the NKA active site. Both types of proteoliposomes were able to induce apatite formation, as evidenced by the presence of the 1040 cm-1 band. Taken together, the findings indicated that the hydrolysis of ATP was dominated by TNAP and other phosphatases present in MVs, while only 3-8% of the total hydrolysis of ATP could be attributed to NKA. It was hypothesized that the loss of Na/K asymmetry in MVs could be caused by a complete depletion of ATP inside MVs, impairing the maintenance of symmetry by NKA. Our study carried out on NKA-liposomes confirmed that NKA could contribute to mineral formation inside MVs, which might complement the known action of PHOSPHO1 in the MV lumen.


Assuntos
Calcinose , Monoéster Fosfórico Hidrolases , Animais , Embrião de Galinha , Monoéster Fosfórico Hidrolases/metabolismo , ATPase Trocadora de Sódio-Potássio , Calcificação Fisiológica , Fosfatase Alcalina/metabolismo , Hidrólise , Trifosfato de Adenosina , Lipossomos/química , Minerais/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012211

RESUMO

The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.


Assuntos
Anexina A6 , Calcinose , 1,2-Dipalmitoilfosfatidilcolina/química , Anexina A6/metabolismo , Colágeno/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatidilserinas/química , Proteolipídeos
7.
Langmuir ; 37(15): 4639-4646, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33826341

RESUMO

We report the stress-strain effect of a stretchable natural rubber (NR)-calcium phosphate composite on the surface wettability (SW) using an innovative approach coupling a uniaxial tensile micromachine, goniometer, and microscope. In situ contact angle measurements in real time were performed during mechanical tension. Our results show that SW is guided by the stress-strain relationship with two different characteristics, depending on the static or dynamic experiments. The results evidenced the limits of the classical theory of wetting. Furthermore, based on the mechanically tunable SW of the system associated with the cytocompatibility of the NR composite, we have modeled such a system for application as a cell support. From the experimental surface energy value, our proposed 3D modeling numerical simulation predicted a window of opportunities for cell-NR survival under mechanical stimuli. The presented data and the thermodynamics-based theoretical approach enable not only accurate correlation of SW with mechanical properties of the NR composite but also provide huge potential for future cell supportability in view of tissue engineering.

8.
J Struct Biol ; 212(2): 107607, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858148

RESUMO

Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.


Assuntos
Biomineralização/fisiologia , Fosfatos de Cálcio/metabolismo , Lipídeos/fisiologia , Fosfatidilserinas/metabolismo , Animais , Apatitas/metabolismo , Biomimética/métodos , Calcificação Fisiológica/fisiologia , Cálcio/metabolismo , Cartilagem/metabolismo , Galinhas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Fêmur/metabolismo , Microscopia Eletrônica de Transmissão/métodos
9.
J Mol Recognit ; 33(7): e2840, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32115798

RESUMO

Fluorescence quenching is widely used to obtain association constants between proteins and ligands. This methodology is based on assumption that ground-state complex between protein and ligand is responsible for quenching. Here, we call the attention about the risk of using the temperature criterion for decision of applying or not fluorescence quenching data to measure association constants. We demonstrated that hydrophobic effect can be the major force involved in the interaction and, as such, superposes the well-established rationalization that host/guest complexation is weakened at higher temperatures due to loss of translational and rotational degrees of freedom. To do so, the complexation of bovine serum albumin with octyl gallate was studied by steady-state, time-resolved fluorescence spectroscopy and isothermal titration calorimetry. The results clearly demonstrated the complexation, even though the Stern-Volmer constant increased at higher temperatures (1.6 × 104 and 4.1 × 105 mol-1 L at 20°C and 40°C), which could suggest a simple dynamic process and not complexation. The entropy-driven feature of the interaction was demonstrated by the unfavorable enthalpy (∆H° = 104.4 kJmol-1 ) but favorable entropy (∆S° = 447.5 Jmol-1 K-1 ). The relevance of the ligand hydrophobicity was also evaluated by comparing ascorbic acid and its ester ascorbyl palmitate. Docking simulations showed a higher number of hydrophobic contacts and lower energy poses for the esters, confirming the experimental results. In conclusion, the well-established rationalization that host/guest complexation is weakened at higher temperatures is not straightforward for protein-ligand interactions. Hence, the temperature effect for a decision between static and dynamic quenching and its use to decide if a complexation at ground state is taking place between ligand and protein should not be used.


Assuntos
Albuminas/química , Ácido Gálico/análogos & derivados , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Entropia , Ácido Gálico/química , Interações Hidrofóbicas e Hidrofílicas , Temperatura , Termodinâmica
10.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085611

RESUMO

Annexin A6 (AnxA6) is the largest member of the annexin family of proteins present in matrix vesicles (MVs). MVs are a special class of extracellular vesicles that serve as a nucleation site during cartilage, bone, and mantle dentin mineralization. In this study, we assessed the localization of AnxA6 in the MV membrane bilayer using native MVs and MV biomimetics. Biochemical analyses revealed that AnxA6 in MVs can be divided into three distinct groups. The first group corresponds to Ca2+-bound AnxA6 interacting with the inner leaflet of the MV membrane. The second group corresponds to AnxA6 localized on the surface of the outer leaflet. The third group corresponds to AnxA6 inserted in the membrane's hydrophobic bilayer and co-localized with cholesterol (Chol). Using monolayers and proteoliposomes composed of either dipalmitoylphosphatidylcholine (DPPC) to mimic the outer leaflet of the MV membrane bilayer or a 9:1 DPPC:dipalmitoylphosphatidylserine (DPPS) mixture to mimic the inner leaflet, with and without Ca2+, we confirmed that, in agreement with the biochemical data, AnxA6 interacted differently with the MV membrane. Thermodynamic analyses based on the measurement of surface pressure exclusion (πexc), enthalpy (ΔH), and phase transition cooperativity (Δt1/2) showed that AnxA6 interacted with DPPC and 9:1 DPPC:DPPS systems and that this interaction increased in the presence of Chol. The selective recruitment of AnxA6 by Chol was observed in MVs as probed by the addition of methyl-ß-cyclodextrin (MßCD). AnxA6-lipid interaction was also Ca2+-dependent, as evidenced by the increase in πexc in negatively charged 9:1 DPPC:DPPS monolayers and the decrease in ΔH in 9:1 DPPC:DPPS proteoliposomes caused by the addition of AnxA6 in the presence of Ca2+ compared to DPPC zwitterionic bilayers. The interaction of AnxA6 with DPPC and 9:1 DPPC:DPPS systems was distinct even in the absence of Ca2+ as observed by the larger change in Δt1/2 in 9:1 DPPC:DPPS vesicles as compared to DPPC vesicles. Protrusions on the surface of DPPC proteoliposomes observed by atomic force microscopy suggested that oligomeric AnxA6 interacted with the vesicle membrane. Further work is needed to delineate possible functions of AnxA6 at its different localizations and ways of interaction with lipids.


Assuntos
Anexina A6/metabolismo , Calcificação Fisiológica , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Microscopia de Força Atômica , Proteolipídeos/metabolismo
11.
Arch Biochem Biophys ; 663: 192-198, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30659801

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme in the biomineralization process as it produces phosphate from a number of phospho-substrates stimulating mineralization while it also inactivates inorganic pyrophosphate, a potent mineralization inhibitor. We have previously reported on the reconstitution of TNAP on Langmuir monolayers as well as proteoliposomes. In the present study, thin films composed of dimyristoylphosphatidic acid (DMPA) were deposited on titanium supports by the Langmuir-Blodgett (LB) technique, and we determined preservation of TNAP's phosphohydrolytic activity after incorporation into the LB films. Increased mineralization was observed after exposing the supports containing the DMPA:TNAP LB films to solutions of phospho-substrates, thus evidencing the role of TNAP on the growth of calcium phosphates after immobilization. These coatings deposited on metallic supports can be potentially applied as osteoconductive materials, aiming at the optimization of bone-substitutes integration in vivo.


Assuntos
Fosfatase Alcalina/metabolismo , Biomimética , Biomineralização , Enzimas Imobilizadas/metabolismo , Titânio/química , Fosfatos de Cálcio/química , Glicerofosfolipídeos/química , Cinética , Propriedades de Superfície
12.
Arch Biochem Biophys ; 667: 14-21, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-30998909

RESUMO

Matrix vesicles (MVs) are a class of extracellular vesicles that initiate mineralization in cartilage, bone, and other vertebrate tissues by accumulating calcium ions (Ca2+) and inorganic phosphate (Pi) within their lumen and forming a nucleation core (NC). After further sequestration of Ca2+ and Pi, the NC transforms into crystalline complexes. Direct evidence of the existence of the NC and its maturation have been provided solely by analyses of dried samples. We isolated MVs from chicken embryo cartilage and used atomic force microscopy peak force quantitative nanomechanical property mapping (AFM-PFQNM) to measure the nanomechanical and morphological properties of individual MVs under both mineralizing (+Ca2+) and non-mineralizing (-Ca2+) fluid conditions. The elastic modulus of MVs significantly increased by 4-fold after incubation in mineralization buffer. From AFM mapping data, we inferred the morphological changes of MVs as mineralization progresses: prior to mineralization, a punctate feature, the NC, is present within MVs and this feature grows and stiffens during mineralization until it occupies most of the MV lumen. Dynamic light scattering showed a significant increase in hydrodynamic diameter and no change in the zeta potential of hydrated MVs after incubation with Ca2+. This validates that crystalline complexes, which are strongly negative relative to MVs, were forming within the lumen of MVs. These data were substantiated by transmission electron microscopy energy dispersive X-ray and Fourier transform infrared spectroscopic analyses of dried MVs, which provide evidence that the complexes increased in size, crystallinity, and Ca/P ratio within MVs during the mineralization process.


Assuntos
Biomineralização/fisiologia , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Microscopia de Força Atômica/métodos , Animais , Fenômenos Biomecânicos , Cartilagem/química , Cartilagem/metabolismo , Cartilagem/ultraestrutura , Embrião de Galinha , Vesículas Extracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Bone Miner Metab ; 37(4): 607-613, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30324534

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP), a glycosylphosphatidylinositol-anchored ectoenzyme present on the membrane of matrix vesicles (MVs), hydrolyzes the mineralization inhibitor inorganic pyrophosphate as well as ATP to generate the inorganic phosphate needed for apatite formation. Herein, we used proteoliposomes harboring TNAP as MV biomimetics with or without nucleators of mineral formation (amorphous calcium phosphate and complexes with phosphatidylserine) to assess the role of the MVs' membrane lipid composition on TNAP activity by means of turbidity assay and FTIR analysis. We found that TNAP-proteoliposomes have the ability to induce mineralization even in the absence of mineral nucleators. We also found that the addition of cholesterol or sphingomyelin to TNAP-proteoliposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine reduced the ability of TNAP to induce biomineralization. Our results suggest that the lipid microenvironment is essential for the induction and propagation of minerals mediated by TNAP.


Assuntos
Fosfatase Alcalina/metabolismo , Calcificação Fisiológica , Microambiente Celular , Lipídeos/química , Proteolipídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Difusão Dinâmica da Luz , Humanos , Hidrólise , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Biochim Biophys Acta Gen Subj ; 1862(3): 532-546, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29108957

RESUMO

BACKGROUND: Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW: The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS: MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE: MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.


Assuntos
Condrócitos/ultraestrutura , Matriz Extracelular/metabolismo , Vesículas Extracelulares , Osteoblastos/ultraestrutura , Animais , Apatitas/metabolismo , Materiais Biomiméticos , Calcificação Fisiológica/fisiologia , Calcinose/fisiopatologia , Condrócitos/patologia , Colágeno/metabolismo , Vesículas Extracelulares/fisiologia , Humanos , Hipertrofia , Microdomínios da Membrana/fisiologia , Minerais/metabolismo , Modelos Biológicos , Biogênese de Organelas , Proteolipídeos , Manejo de Espécimes , Calcificação Vascular/fisiopatologia
15.
Biochim Biophys Acta Biomembr ; 1859(10): 1911-1920, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28549727

RESUMO

Atomic force microscopy (AFM) is one of the most commonly used scanning probe microscopy techniques for nanoscale imaging and characterization of lipid-based particles. However, obtaining images of such particles using AFM is still a challenge. The present study extends the capabilities of AFM to the characterization of proteoliposomes, a special class of liposomes composed of lipids and proteins, mimicking matrix vesicles (MVs) involved in the biomineralization process. To this end, proteoliposomes were synthesized, composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS), with inserted tissue-nonspecific alkaline phosphatase (TNAP) and/or annexin V (AnxA5), both characteristic proteins of osteoblast-derived MVs. We then aimed to study how TNAP and AnxA5 insertion affects the proteoliposomes' membrane properties and, in turn, interactions with type II collagen, thus mimicking early MV activity during biomineralization. AFM images of these proteoliposomes, acquired in dynamic mode, revealed the presence of surface protrusions with distinct viscoelasticity, thus suggesting that the presence of the proteins induced local changes in membrane fluidity. Surface protrusions were measurable in TNAP-proteoliposomes but barely detectable in AnxA5-proteoliposomes. More complex surface structures were observed for proteoliposomes harboring both TNAP and AnxA5 concomitantly, resulting in a lower affinity for type II collagen fibers compared to proteoliposomes harboring AnxA5 alone. The present study achieved the topographic analysis of lipid vesicles by direct visualization of structural changes, resulting from protein incorporation, without the need for fluorescent probes.


Assuntos
Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Anexina A5/química , Anexina A5/metabolismo , Proteolipídeos/química , Proteolipídeos/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animais , Biomimética/métodos , Calcificação Fisiológica/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Colágeno Tipo II/química , Colágeno Tipo II/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microscopia de Força Atômica/métodos , Ratos , Serina/química , Serina/metabolismo
16.
J Nanosci Nanotechnol ; 16(2): 1437-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433601

RESUMO

Carbon nanotubes (CNT) is one of the most studied biomaterials, and issues about its cytotoxicity remain. The objective of our study was to investigate the in vitro influence of defective CNT on culture growth and on the formation of mineralized matrix nodules by primary osteoblastic cells grown in plastic or titanium (Ti) surfaces. Cellular viability, alkaline phosphatase activity and formation of mineral nodules were evaluated, besides the CNT characterization tests. The CNT studies showed better cell viability for osteoblasts incubated at stationary phase of culture in the presence of Ti (about 70%), but for the other phases, the cells suffered a significant reduction in viability. A peak of maximum alkaline phosphatase activity in the intermediate stage of growth (14 days of culture), which is characteristic for osteoblasts, was not affected, regardless of the presence of Ti or combination of CNT and Ti. Mineralized matrix nodules grew much more when the cells were incubated with CNT in the last 2 phases than when incubated in the first week, mainly when the cultures were grown on Ti discs. This study provides information for the application of CNT associated or not with Ti in processes of mineralization biostimulation.


Assuntos
Fosfatase Alcalina/metabolismo , Calcificação Fisiológica , Nanotubos de Carbono/química , Osteoblastos/metabolismo , Osteogênese , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Sobrevivência Celular , Células Cultivadas , Masculino , Osteoblastos/citologia , Ratos , Ratos Wistar
17.
J Mater Sci Mater Med ; 27(3): 62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26800693

RESUMO

The use of carbon nanotubes (CNTs) on the development of biomaterials has been motivated by their excellent mechanical properties that could improve synthetic bone materials. However, the toxicity of CNTs on the tissue/implant interface and their influence on the biomineralization process have some contradictions. We investigated the influence of CNTs on osteoblasts plated on titanium (Ti) discs or plastic surfaces. We evaluated osteoblasts viability, alkaline phosphatase (ALP) activity, and mineralized matrix formation in the different phases of osteoblasts growth in the presence of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). An increase in osteoblasts viability was observed at the 21st day for both CNTs on plastic surface, while viability increased for MWCNTs at the 7th and 14th days and at the 7th day for SWCNTs on Ti discs compared to control. ALP activity increased at the 14th and 21st days for MWCNTs on plastic surfaces. For cells incubated with SWCNTs, an increase in ALP activity at the 7th day for plastic surface and at the 14th day for both materials (plastic and Ti) was observed. The mineralized matrix formation increased at the 21st day on plastic surface with SWCNTs, and at the 14th and 21st days for both CNTs on Ti discs. In conclusion, both SWCNTs and MWCNTs are not toxic to osteoblasts at concentrations up to 5 × 10(-5) and 1.3 × 10(-2) mg/mL, respectively, either in Ti discs or plastic surfaces. In the long term, the cells grown in contact with both CNTs and Ti presented better results regarding bone-like nodules formation.


Assuntos
Nanotubos de Carbono , Osteoblastos/fisiologia , Alicerces Teciduais , Animais , Células da Medula Óssea , Sobrevivência Celular , Células Cultivadas , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Osteogênese , Ratos , Ratos Wistar
18.
J Mater Sci Mater Med ; 27(4): 71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26886819

RESUMO

Graphene oxide (GO) has attracted remarkable attention in recent years due to properties such as extremely large surface area, biocompatibility, biostability, and easy chemical functionalization. Osteoblasts underlie the deposition of hydroxyapatite crystals in the bone protein matrix during biomineralization; hydroxyapatite deposition involves extracellular matrix vesicles that are rich in alkaline phosphatase (ALP). Here, we have investigated how GO affects osteoblast viability, ALP activity, and mineralized matrix formation in osteoblast cultures in three different phases of cell growth, in the presence and in the absence of titanium (Ti). Scanning electron microscopy (SEM), Raman spectra, and energy dispersive spectroscopy aided GO characterization. The presence of GO increased the viability of osteoblast cells grown on a plastic surface. However, osteoblast viability on Ti discs was lower in the presence than in the absence of GO. ALP activity emerged at 14 days for the cell culture incubated with GO. The total protein concentration also increased at 21 days on both the Ti discs and plastic surface. Osteoblasts grown on Ti discs had increased mineralized matrix formation in the presence of GO as compared to the cells grown in the absence of GO. SEM images of the cell cultures on plastic surfaces in the presence of GO suggested delayed mineralized matrix formation. In conclusion, applications requiring the presence of Ti, such as prostheses and implants, should benefit from the use of GO, which may increase mineralized nodule formation, stimulate biomineralization, and accelerate bone regeneration.


Assuntos
Materiais Biocompatíveis , Grafite/química , Osteoblastos/fisiologia , Titânio/química , Animais , Sobrevivência Celular , Microscopia Eletrônica de Varredura , Plásticos , Ratos , Ratos Wistar , Propriedades de Superfície
19.
Colloids Surf A Physicochem Eng Asp ; 504: 305-311, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28190931

RESUMO

UV-vis spectroscopy is a powerful tool to investigate surface phenomena. Surface tension measurements coupled to spectroscopic techniques can help to elucidate how the interface organization influences the electronic properties of molecules. However, appreciable sample volumes are usually necessary to achieve strong signals during conduction of experiments. This study reports on the simultaneous acquisition of surface tension data and UV-vis spectra by axisymmetric drop shape analysis (ADSA) coupled to diffuse reflectance (DRUV) spectrophotometry using a pendant microliter-drop that requires small sample volumes and low analyte concentrations. Three example systems gave evidence of the applicability of this technique: (a) disaggregation of an organic dye driven by surfactant as a function of the surface tension and alterations in the UV-vis spectra, (b) activity of a glycosylphosphatidylinositol anchored enzyme estimated from formation of a colored product, and (c) interaction between this enzyme and biomimetic membrane systems consisting of dipalmitoylphosphaditylcholine and cholestenone. Apart from using smaller sample volume, this coupled technique allowed to investigate interfacial organization in the light of electronic spectra obtained in loco within a shorter acquisition time. This procedure provided precise interfacial information about static and dynamic systems. This has been the first study describing the kinetic activity of an enzyme in the presence of phospholipid monolayers through simultaneous determination of the surface tension and UV-vis spectra.

20.
Arch Biochem Biophys ; 584: 79-89, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26325078

RESUMO

We describe the production of stable DPPC and DPPC:DPPS-proteoliposomes harboring annexin V (AnxA5) and tissue-nonspecific alkaline phosphatase (TNAP) and their use to investigate whether the presence of AnxA5 impacts the kinetic parameters for hydrolysis of TNAP substrates at physiological pH. The best catalytic efficiency was achieved in DPPS 10%-proteoliposomes (molar ratio), conditions that also increased the specificity of TNAP hydrolysis of PPi. Melting behavior of liposomes and proteoliposomes was analyzed via differential scanning calorimetry. The presence of 10% DPPS in DPPC-liposomes causes a broadening of the transition peaks, with AnxA5 and TNAP promoting a decrease in ΔH values. AnxA5 was able to mediate Ca(2+)-influx into the DPPC and DPPC:DPPS 10%-vesicles at physiological Ca(2+) concentrations (∼2 mM). This process was not affected by the presence of TNAP in the proteoliposomes. However, AnxA5 significantly affects the hydrolysis of TNAP substrates. Studies with GUVs confirmed the functional reconstitution of AnxA5 in the mimetic systems. These proteoliposomes are useful as mimetics of mineralizing cell-derived matrix vesicles, known to be responsible for the initiation of endochondral ossification, as they successfully transport Ca(2+) and possess the ability to hydrolyze phosphosubstrates in the lipid-water interface.


Assuntos
Fosfatase Alcalina/química , Anexina A5/química , Materiais Biomiméticos/química , Cálcio/química , Lipossomos/química , Humanos , Hidrólise , Células Jurkat , Fosfatidilserinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA