Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Plant Microbe Interact ; 31(10): 1083-1094, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004290

RESUMO

Brown stem rot, caused by the fungus Phialophora gregata, reduces soybean yield by up to 38%. Although three dominant resistance loci have been identified (Rbs1 to Rbs3), the gene networks responsible for pathogen recognition and defense remain unknown. Further, identification and characterization of resistant and susceptible germplasm remains difficult. We conducted RNA-Seq of infected and mock-infected leaf, stem, and root tissues of a resistant (PI 437970, Rbs3) and susceptible (Corsoy 79) genotype. Combining historical mapping data with genotype expression differences allowed us to identify a cluster of receptor-like proteins that are candidates for the Rbs3 resistance gene. Reads mapping to the Rbs3 locus were used to identify potential novel single-nucleotide polymorphisms within candidate genes that could improve phenotyping and breeding efficiency. Comparing responses to infection revealed little overlap in differential gene expression between genotypes or tissues. Gene networks associated with defense, DNA replication, and iron homeostasis are hallmarks of resistance to P. gregata. This novel research demonstrates the utility of combining contrasting genotypes, gene expression, and classical genetic studies to characterize complex disease resistance loci.


Assuntos
Glycine max/genética , Phialophora , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética
2.
Plant Physiol ; 175(3): 1370-1380, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28912378

RESUMO

Rhg4 is a major genetic locus that contributes to soybean cyst nematode (SCN) resistance in the Peking-type resistance of soybean (Glycine max), which also requires the rhg1 gene. By map-based cloning and functional genomic approaches, we previously showed that the Rhg4 gene encodes a predicted cytosolic serine hydroxymethyltransferase (GmSHMT08); however, the novel gain of function of GmSHMT08 in SCN resistance remains to be characterized. Using a forward genetic screen, we identified an allelic series of GmSHMT08 mutants that shed new light on the mechanistic aspects of GmSHMT08-mediated resistance. The new mutants provide compelling genetic evidence that Peking-type rhg1 resistance in cv Forrest is fully dependent on the GmSHMT08 gene and demonstrates that this resistance is mechanistically different from the PI 88788-type of resistance that only requires rhg1 We also demonstrated that rhg1-a from cv Forrest, although required, does not exert selection pressure on the nematode to shift from HG type 7, which further validates the bigenic nature of this resistance. Mapping of the identified mutations onto the SHMT structural model uncovered key residues for structural stability, ligand binding, enzyme activity, and protein interactions, suggesting that GmSHMT08 has additional functions aside from its main enzymatic role in SCN resistance. Lastly, we demonstrate the functionality of the GmSHMT08 SCN resistance gene in a transgenic soybean plant.


Assuntos
Resistência à Doença , Glicina Hidroximetiltransferase/genética , Glycine max/enzimologia , Glycine max/parasitologia , Mutagênese/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Teste de Complementação Genética , Testes Genéticos , Glicina Hidroximetiltransferase/química , Modelos Moleculares , Mutação/genética , Plantas Geneticamente Modificadas , Glycine max/imunologia , Tylenchoidea/patogenicidade , Virulência
3.
Theor Appl Genet ; 131(4): 757-773, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29435603

RESUMO

KEY MESSAGE: Complexity and inconsistencies in resistance mapping publications of soybean sudden death syndrome (SDS) result in interpretation difficulty. This review integrates SDS mapping literature and proposes a new nomenclature system for reproducible SDS resistance loci. Soybean resistance to sudden death syndrome (SDS) is composed of foliar resistance to phytotoxins and root resistance to pathogen invasion. There are more than 80 quantitative trait loci (QTL) and dozens of single nucleotide polymorphisms (SNPs) associated with soybean resistance to SDS. The validity of these QTL and SNPs is questionable because of the complexity in phenotyping methodologies, the disease synergism between SDS and soybean cyst nematode (SCN), the variability from the interactions between soybean genotypes and environments, and the inconsistencies in the QTL nomenclature. This review organizes SDS mapping results and proposes the Rfv (resistance to Fusarium virguliforme) nomenclature based on supporting criteria described in the text. Among ten reproducible loci receiving our Rfv nomenclature, Rfv18-01 is mostly supported by field studies and it co-localizes to the SCN resistance locus rhg1. The possibility that Rfv18-01 is a pleiotropic resistance locus and the concern about Rfv18-01 being confounded with Rhg1 is discussed. On the other hand, Rfv06-01, Rfv06-02, Rfv09-01, Rfv13-01, and Rfv16-01 were identified both by screening soybean leaves against phytotoxic culture filtrates and by evaluating SDS severity in fields. Future phenotyping using leaf- and root-specific resistance screening methodologies may improve the precision of SDS resistance, and advanced genetic studies may further clarify the interactions among soybean genotypes, F. virguliforme, SCN, and environments. The review provides a summary of the SDS resistance literature and proposes a framework for communicating SDS resistance loci for future research considering molecular interactions and genetic breeding for soybean SDS resistance.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Fusarium , Genoma de Planta , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Glycine max/microbiologia
4.
Theor Appl Genet ; 131(7): 1541-1552, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29663054

RESUMO

KEY MESSAGE: Despite numerous challenges, field testing of three sources of genetic resistance to sudden death syndrome of soybean provides information to more effectively improve resistance to this disease in cultivars. Sudden death syndrome (SDS) of soybean [Glycine max (L.) Merrill] is a disease that causes yield loss in soybean growing regions across the USA and worldwide. While several quantitative trait loci (QTL) for SDS resistance have been mapped, studies to further evaluate these QTL are limited. The objective of our research was to map SDS resistance QTL and to test the effect of mapped resistance QTL on foliar symptoms when incorporated into elite soybean backgrounds. We mapped a QTL from Ripley to chromosome 10 (CHR10) and a QTL from PI507531 to chromosomes 1 and 18 (CHR1 and 18). Six populations were then developed to test the following QTL: cqSDS-001, with resistance originating from PI567374, CHR10, CHR1, and CHR18. The populations which segregated for resistant and susceptible QTL alleles were field tested in multiple environments and evaluated for SDS foliar symptoms. While foliar disease development was variable across environments and populations, a significant effect of each QTL on disease was detected within at least one environment. This includes the detection of cqSDS-001 in three genetic backgrounds. The QTL allele from the resistant parents was associated with greater resistance than the susceptible alleles for all QTL and backgrounds with the exception of the allele for CHR18, where the opposite occurred. This study highlights the importance and difficulties of evaluating QTL and the need for multi-year SDS field testing. The information presented in this study can aid breeders in making decisions to improve resistance to SDS.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Fenótipo
5.
Theor Appl Genet ; 131(5): 1047-1062, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29582113

RESUMO

KEY MESSAGE: Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars. Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing 'A95-684043', a high-yielding maturity group (MG) II line resistant to SCN, with 'LS94-3207' and 'LS98-0582' of MG IV, resistant to both F. virguliforme and SCN. Two hundred F7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Haplótipos , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Glycine max/parasitologia , Tylenchoidea
6.
Theor Appl Genet ; 130(10): 2139-2149, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28748252

RESUMO

KEY MESSAGE: Four novel QTL and interactions among QTL were identified in this research, using as a parent line the most SDS-resistant genotype within soybean cultivars of the US early maturity groups. Soybean sudden death syndrome (SDS) reduces soybean yield in most of the growing areas of the world. The causal agent of SDS, soilborne fungus Fusarium virguliforme (Fv), releases phytotoxins taken up by the plant to produce chlorosis and necrosis in the leaves. Planting resistant cultivars is the most successful management practice to control the disease. The objective of this study was to identify quantitative trait loci (QTL) associated with the resistance response of MN1606SP to SDS. A mapping population of F 2:3 lines created by crossing the highly resistant cultivar 'MN1606SP' and the susceptible cultivar 'Spencer' was phenotyped in the greenhouse at three different planting times, each with three replications. Plants were artificially inoculated using SDS infested sorghum homogeneously mixed with the soil. Data were collected on three disease criteria, foliar disease incidence (DI), foliar leaf scorch disease severity (DS), and root rot severity. Disease index (DX) was calculated as DI × DS. Ten QTL were identified for the different disease assessment criteria, three for DI, four for DX, and three for root rot severity. Three QTL identified for root rot severity and one QTL for disease incidence are considered novel, since no previous reports related to these QTL are available. Among QTL, two interactions were detected between four different QTL. The interactions suggest that resistance to SDS is not only dependent on additive gene effects. The novel QTL and the interactions observed in this study will be useful to soybean breeders for improvement of SDS resistance in soybean germplasm.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fusarium , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Glycine max/microbiologia
7.
Theor Appl Genet ; 129(3): 495-506, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26678962

RESUMO

KEY MESSAGE: Soybean deploys multiple genetic mechanisms to confer tolerance to Fusarium virguliforme toxins. This study revealed that F. virguliforme culture filtrates could be used in mapping QTL underlying foliar SDS resistance. Sudden death syndrome (SDS) is a major soybean disease throughout most of the soybean growing regions in the world including the United States. The disease is caused by the fungal pathogen, Fusarium virguliforme (Fv). The fungus produces several toxins that are responsible for development of interveinal leaf chlorosis and necrosis, which are typical foliar SDS symptoms. Growing of resistant cultivars has been the most effective method in controlling the disease. The objective of the present study was to identify quantitative trait loci (QTL) underlying host responses of soybean to Fv toxins present in culture filtrates. To accomplish this objective, two recombinant inbred line (RIL) populations, AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582), segregating for SDS resistance were evaluated for foliar symptom development by applying two screening protocols, the stem cutting and the root feeding assays. The AX19286 population revealed two major and seven minor QTL for SDS resistance. In the AX19287 population, we identified five major QTL and three minor QTL. The two QTL mapped to Chromosome 7 [molecular linkage group (MLG) M] and Chromosome 20 (MLG I) are most likely novel, and were detected through screening of the AX19287 population with stem cutting and root feeding assays, respectively. This study established that Fv culture filtrates could be employed in mapping QTL underlying foliar SDS resistance. The outcomes of the research also suggest that multiple genetic mechanisms might be used by soybean to overcome the toxic effects of the toxins secreted by the pathogen into culture filtrates.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Glycine max/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Genótipo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Glycine max/microbiologia
8.
Theor Appl Genet ; 129(5): 863-77, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952252

RESUMO

KEY MESSAGE: Using a combination of phenotypic screening and molecular, statistical, and linkage analyses, we have mapped a dominant soybean rust resistance gene in soybean PI 567104B. Asian soybean rust (SBR), caused by the fungus Phakopsora pachyrhizi Syd. and P. Syd., is one of the most economically important diseases that affect soybean production worldwide. A long-term strategy for minimizing the effects of SBR is the development of genetically resistant cultivars. The objectives of the study were to identify the location of a rust-resistance (Rpp) gene(s) in plant introduction (PI) 567104B, and to determine if the gene(s) in PI 567104B was different from previously mapped Rpp loci. The progeny of the cross of 'IAR 2001 BSR' × PI 567104B was phenotyped from field assays of the F 2:3 and F 4:5 generations and from a growth chamber assay of 253 F 5:6 recombinant inbred lines (RILs). For the growth chamber, the phenotyping was conducted by inoculation with a purified 2006 fungal isolate from Mississippi. A resistance gene locus on PI 567104B was mapped to a region containing the Rpp6 locus on chromosome 18. The high level of resistance of F 1 plants from two other crosses with PI 567104B as one of the parents indicated that the gene from PI 567104B was dominant. The interval containing the gene is flanked by the simple sequence repeat (SSR) markers Satt131 and Satt394, and includes the SSR markers BARCSOYSSR_18_0331 and BARCSOYSSR_18_0380. The results also indicated that the resistance gene from PI 567104B is different from the Rpp1 to the Rpp4 genes previously identified. To determine if the gene from PI 567104B is different from the Rpp6 gene from PI 567102B, additional research will be required.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Glycine max/genética , Doenças das Plantas/genética , Basidiomycota , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas/genética , Genes Dominantes , Ligação Genética , Marcadores Genéticos , Genótipo , Endogamia , Repetições de Microssatélites , Fenótipo , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
9.
Plant Cell Environ ; 37(1): 213-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23742135

RESUMO

In soybean [Glycine max (L.) Merr.], iron deficiency results in interveinal chlorosis and decreased photosynthetic capacity, leading to stunting and yield loss. In this study, gene expression analyses investigated the role of soybean replication protein A (RPA) subunits during iron stress. Nine RPA homologs were significantly differentially expressed in response to iron stress in the near isogenic lines (NILs) Clark (iron efficient) and Isoclark (iron inefficient). RPA homologs exhibited opposing expression patterns in the two NILs, with RPA expression significantly repressed during iron deficiency in Clark but induced in Isoclark. We used virus induced gene silencing (VIGS) to repress GmRPA3 expression in the iron inefficient line Isoclark and mirror expression in Clark. GmRPA3-silenced plants had improved IDC symptoms and chlorophyll content under iron deficient conditions and also displayed stunted growth regardless of iron availability. RNA-Seq comparing gene expression between GmRPA3-silenced and empty vector plants revealed massive transcriptional reprogramming with differential expression of genes associated with defense, immunity, aging, death, protein modification, protein synthesis, photosynthesis and iron uptake and transport genes. Our findings suggest the iron efficient genotype Clark is able to induce energy controlling pathways, possibly regulated by SnRK1/TOR, to promote nutrient recycling and stress responses in iron deficient conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Glycine max/fisiologia , Deficiências de Ferro , Proteína de Replicação A/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteína de Replicação A/genética , Glycine max/genética , Estresse Fisiológico , Simbiose
10.
Plant Physiol ; 158(4): 1745-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22319075

RESUMO

Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean (Glycine max) commercial plantings, the identification and use of iron-efficient genotypes has proven to be the best form of managing this soil-related plant stress. Previous studies conducted in soybean identified a significant iron efficiency quantitative trait locus (QTL) explaining more than 70% of the phenotypic variation for the trait. In this research, we identified candidate genes underlying this QTL through molecular breeding, mapping, and transcriptome sequencing. Introgression mapping was performed using two related near-isogenic lines in which a region located on soybean chromosome 3 required for iron efficiency was identified. The region corresponds to the previously reported iron efficiency QTL. The location was further confirmed through QTL mapping conducted in this study. Transcriptome sequencing and quantitative real-time-polymerase chain reaction identified two genes encoding transcription factors within the region that were significantly induced in soybean roots under iron stress. The two induced transcription factors were identified as homologs of the subgroup lb basic helix-loop-helix (bHLH) genes that are known to regulate the strategy I response in Arabidopsis (Arabidopsis thaliana). Resequencing of these differentially expressed genes unveiled a significant deletion within a predicted dimerization domain. We hypothesize that this deletion disrupts the Fe-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)/bHLH heterodimer that has been shown to induce known iron acquisition genes.


Assuntos
Genes de Plantas/genética , Estudos de Associação Genética , Glycine max/genética , Glycine max/metabolismo , Ferro/metabolismo , Locos de Características Quantitativas/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Endogamia , Repetições de Microssatélites/genética , Modelos Moleculares , Anotação de Sequência Molecular , Fenótipo , Mapeamento Físico do Cromossomo , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
PLoS One ; 14(2): e0212071, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30807585

RESUMO

Fusarium virguliforme is a soil borne root pathogen that causes sudden death syndrome (SDS) in soybean [Glycine max (L.) Merrill]. Once the fungus invades the root xylem tissues, the pathogen secretes toxins that cause chlorosis and necrosis in foliar tissues leading to defoliation, flower and pod drop and eventually death of plants. Resistance to F. virguliforme in soybean is partial and governed by over 80 quantitative trait loci (QTL). We have conducted genome-wide association study (GWAS) for a group of 254 plant introductions lines using a panel of approximately 30,000 SNPs and identified 19 single nucleotide polymorphic loci (SNPL) that are associated with 14 genomic regions encoding foliar SDS and eight SNPL associated with seven genomic regions for root rot resistance. Of the identified 27 SNPL, six SNPL for foliar SDS resistance and two SNPL for root rot resistance co-mapped to previously identified QTL for SDS resistance. This study identified 13 SNPL associated with eight novel genomic regions containing foliar SDS resistance genes and six SNPL with five novel regions for root-rot resistance. This study identified five genes carrying nonsynonymous mutations: (i) three of which mapped to previously identified QTL for foliar SDS resistance and (ii) two mapped to two novel regions containing root rot resistance genes. Of the three genes mapped to QTL for foliar SDS resistance genes, two encode LRR-receptors and third one encodes a novel protein with unknown function. Of the two genes governing root rot resistance, Glyma.01g222900.1 encodes a soybean-specific LEA protein and Glyma.10g058700.1 encodes a heparan-alpha-glucosaminide N-acetyltransferase. In the LEA protein, a conserved serine residue was substituted with asparagine; and in the heparan-alpha-glucosaminide N-acetyltransferase, a conserved histidine residue was substituted with an arginine residue. Such changes are expected to alter functions of these two proteins regulated through phosphorylation. The five genes with nonsynonymous mutations could be considered candidate SDS resistance genes and should be suitable molecular markers for breeding SDS resistance in soybean. The study also reports desirable plant introduction lines and novel genomic regions for enhancing SDS resistance in soybean.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Glycine max/genética , Fusarium/isolamento & purificação , Fusarium/fisiologia , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Locos de Características Quantitativas , Glycine max/microbiologia
12.
BMC Genomics ; 8: 476, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18154662

RESUMO

BACKGROUND: Iron is one of fourteen mineral elements required for proper plant growth and development of soybean (Glycine max L. Merr.). Soybeans grown on calcareous soils, which are prevalent in the upper Midwest of the United States, often exhibit symptoms indicative of iron deficiency chlorosis (IDC). Yield loss has a positive linear correlation with increasing severity of chlorotic symptoms. As soybean is an important agronomic crop, it is essential to understand the genetics and physiology of traits affecting plant yield. Soybean cultivars vary greatly in their ability to respond successfully to iron deficiency stress. Microarray analyses permit the identification of genes and physiological processes involved in soybean's response to iron stress. RESULTS: RNA isolated from the roots of two near isogenic lines, which differ in iron efficiency, PI 548533 (Clark; iron efficient) and PI 547430 (IsoClark; iron inefficient), were compared on a spotted microarray slide containing 9,728 cDNAs from root specific EST libraries. A comparison of RNA transcripts isolated from plants grown under iron limiting hydroponic conditions for two weeks revealed 43 genes as differentially expressed. A single linkage clustering analysis of these 43 genes showed 57% of them possessed high sequence similarity to known stress induced genes. A control experiment comparing plants grown under adequate iron hydroponic conditions showed no differences in gene expression between the two near isogenic lines. Expression levels of a subset of the differentially expressed genes were also compared by real time reverse transcriptase PCR (RT-PCR). The RT-PCR experiments confirmed differential expression between the iron efficient and iron inefficient plants for 9 of 10 randomly chosen genes examined. To gain further insight into the iron physiological status of the plants, the root iron reductase activity was measured in both iron efficient and inefficient genotypes for plants grown under iron sufficient and iron limited conditions. Iron inefficient plants failed to respond to decreased iron availability with increased activity of Fe reductase. CONCLUSION: These experiments have identified genes involved in the soybean iron deficiency chlorosis response under iron deficient conditions. Single linkage cluster analysis suggests iron limited soybeans mount a general stress response as well as a specialized iron deficiency stress response. Root membrane bound reductase capacity is often correlated with iron efficiency. Under iron-limited conditions, the iron efficient plant had high root bound membrane reductase capacity while the iron inefficient plants reductase levels remained low, further limiting iron uptake through the root. Many of the genes up-regulated in the iron inefficient NIL are involved in known stress induced pathways. The most striking response of the iron inefficient genotype to iron deficiency stress was the induction of a profusion of signaling and regulatory genes, presumably in an attempt to establish and maintain cellular homeostasis. Genes were up-regulated that point toward an increased transport of molecules through membranes. Genes associated with reactive oxidative species and an ROS-defensive enzyme were also induced. The up-regulation of genes involved in DNA repair and RNA stability reflect the inhospitable cellular environment resulting from iron deficiency stress. Other genes were induced that are involved in protein and lipid catabolism; perhaps as an effort to maintain carbon flow and scavenge energy. The under-expression of a key glycolitic gene may result in the iron-inefficient genotype being energetically challenged to maintain a stable cellular environment. These experiments have identified candidate genes and processes for further experimentation to increase our understanding of soybeans' response to iron deficiency stress.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Glycine max/genética , Glycine max/metabolismo , Deficiências de Ferro , Ferro/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Análise por Conglomerados , DNA Complementar/genética , Etiquetas de Sequências Expressas , FMN Redutase/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Hidroponia , Família Multigênica/genética , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/análise , RNA de Plantas/genética , Glycine max/enzimologia
13.
Plant Physiol Biochem ; 45(5): 287-92, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17466527

RESUMO

Iron deficiency chlorosis (IDC) in soybeans has proven to be a perennial problem in the calcareous soils of the U.S. upper Midwest. A historically difficult trait to study in fields, the use of hydroponics in a controlled greenhouse environment has provided a mechanism to study genetic variation while limiting environmental complications. IDC susceptible plants growing in calcareous soils and in iron-controlled hydroponic experiments often exhibit a characteristic chlorotic phenotype early in the growing season but are able to re-green later in the season. To examine the changes in gene expression of these plants, near-isogenic lines, iron efficient PI548553 (Clark) and iron inefficient PI547430 (IsoClark), developed for their response to iron deficiency stress [USDA, ARS, National Genetic Resources Program, Germplasm Resources Information Network - GRIN. (Online Database) National Germplasm Resources Laboratory, Beltsville, MD, 2004. Available: http://www.ars.grin.gov/cgi-bin/npgs/html/acc_search.pl?accid=PI+547430. [22] were grown in iron-deficient hydroponic conditions for one week, then transferred to iron sufficient conditions for another week. This induced a phenotypic response mimicking the growth of the plants in the field; initial chlorosis followed by re-greening. RNA was isolated from root tissue and transcript profiles were examined between the two near-isogenic lines using publicly available cDNA microarrays. By alleviating the iron deficiency stress our expectation was that plants would return to baseline expression levels. However, the microarray comparison identified four cDNAs that were under-expressed by a two-fold or greater difference in the iron inefficient plant compared to the iron efficient plant. This differential expression was re-examined and confirmed by real time PCR experimentation. Control experiments showed that these genes are not differentially expressed in plants grown continually under iron rich hydroponic conditions. The expression differences suggest potential residual effects of iron deficiency on plant health.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Glycine max/metabolismo , Deficiências de Ferro , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Adaptação Fisiológica/genética , DNA de Plantas/genética , Proteínas de Plantas/metabolismo , Solo/análise
14.
PLoS One ; 12(1): e0169950, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081566

RESUMO

Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Glycine max/genética , Phytophthora/fisiologia , Sequência de Bases , Mapeamento Cromossômico , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Fenótipo , Phytophthora/isolamento & purificação , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Raízes de Plantas/parasitologia , Glycine max/crescimento & desenvolvimento , Glycine max/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA