Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(12): 126205, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027841

RESUMO

Structural superlubricity describes the state of greatly reduced friction between incommensurate atomically flat surfaces. Theory predicts that, in the superlubric state, the remaining friction sensitively depends on the exact structural configuration. In particular the friction of amorphous and crystalline structures for, otherwise, identical interfaces should be markedly different. Here, we measure friction of antimony nanoparticles on graphite as a function of temperature between 300 and 750 K. We observe a characteristic change of friction when passing the amorphous-crystalline phase transition above 420 K, which shows irreversibility upon cooling. The friction data is modeled with a combination of an area scaling law and a Prandtl-Tomlinson type temperature activation. We find that the characteristic scaling factor γ, which is a fingerprint of the structural state of the interface, is reduced by 20% when passing the phase transition. This validates the concept that structural superlubricity is determined by the effectiveness of atomic force canceling processes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36880969

RESUMO

In this work, we investigated the sliding friction measured between poly(methyl methacrylate) (PMMA) colloidal probes with two different diameters D (1.5 and 15 µm) and laser-induced periodic surface structures (LIPSS) on stainless steel with periodicities Λ of 0.42 and 0.9 µm, when the probes are elastically driven along two directions, perpendicular and parallel to the LIPSS. The time evolution of the friction shows the characteristic features of a reverse stick-slip mechanism recently reported on periodic gratings. The morphologies of colloidal probes and modified steel surfaces are geometrically convoluted in the atomic force microscopy (AFM) topographies simultaneously recorded with the friction measurements. The LIPSS periodicity is only revealed with smaller probes (D = 1.5 µm) and when Λ takes the largest value of 0.9 µm. The average value of the friction force is found to be proportional to the normal load, with a coefficient of friction µ varying between 0.23 and 0.54. The values of µ are rather independent of the direction of motion, and they reach their maximum when the small probe is scanned on the LIPSS with the larger periodicity. The friction is also found to decrease with increasing velocity in all cases, which is attributed to the corresponding decrease of the viscoelastic contact time. These results can be used to model the sliding contacts formed by a set of spherical asperities of different sizes driven on a rough solid surface.

3.
Sci Rep ; 9(1): 9480, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263229

RESUMO

During sliding of metallic surfaces, the near surfaces undergo significant changes in terms of topography, composition and microstructure. Since friction and wear behavior of the materials are strongly influenced by sub-surface deformations, it is fundamental to investigate these effects. Therefore, the present study aims towards a better understanding of the behavior of friction depending on well-defined initial microstructures. By performing sliding experiments on Au-Ni multilayer samples under ultrahigh vacuum (UHV) conditions, we observe that the individual layer thickness of multilayer systems has a strong influence on friction behavior due to the transition in the dominant deformation mechanism near the surface. The experiments reported here provide a new route for lowering the friction force of metallic material systems in dry contact by providing more stable microstructures and alloy formation. Through ultrafine grains present in the alloy formed by mechanical mixing the number of grain boundaries strongly increases and hence, grain boundary-mediated deformation results in the low friction coefficient.

4.
Nat Commun ; 7: 12055, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27350035

RESUMO

Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000-130,000 nm(2)) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold-graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA