Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain ; 136(Pt 8): 2457-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23831613

RESUMO

Altered development of the human cerebral cortex can cause severe malformations with often intractable focal epileptic seizures and may participate in common pathologies, notably epilepsy. This raises important conceptual and therapeutic issues. Two missense mutations in the sushi repeat-containing protein SRPX2 had been previously identified in epileptic disorders with or without structural developmental alteration of the speech cortex. In the present study, we aimed to decipher the precise developmental role of SRPX2, to have a better knowledge on the consequences of its mutations, and to start addressing therapeutic issues through the design of an appropriate animal model. Using an in utero Srpx2 silencing approach, we show that SRPX2 influences neuronal migration in the developing rat cerebral cortex. Wild-type, but not the mutant human SRPX2 proteins, rescued the neuronal migration phenotype caused by Srpx2 silencing in utero, and increased alpha-tubulin acetylation. Following in utero Srpx2 silencing, spontaneous epileptiform activity was recorded post-natally. The neuronal migration defects and the post-natal epileptic consequences were prevented early in embryos by maternal administration of tubulin deacetylase inhibitor tubacin. Hence epileptiform manifestations of developmental origin could be prevented in utero, using a transient and drug-based therapeutic protocol.


Assuntos
Anilidas/farmacologia , Movimento Celular/genética , Córtex Cerebral/metabolismo , Epilepsia/genética , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteínas de Membrana/genética , Neurônios/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Epilepsia/metabolismo , Inativação Gênica , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
2.
Hum Mol Genet ; 19(24): 4848-60, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20858596

RESUMO

It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), whereas mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2-binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded a marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired the FOXP2 regulation of SRPX2 promoter activity, whereas that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNAP2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Redes Reguladoras de Genes , Proteínas do Tecido Nervoso/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Distúrbios da Fala/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Sequência Consenso/genética , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Genes Reporter , Células HEK293 , Humanos , Luciferases/metabolismo , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/genética , Proteínas de Membrana , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Proteínas de Neoplasias , Proteínas do Tecido Nervoso/genética , Linhagem , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Distúrbios da Fala/complicações
3.
Cancers (Basel) ; 13(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572761

RESUMO

BACKGROUND: Double reads in blinded independent central reviews (BICRs) are recommended to control the quality of trials but they are prone to discordances. We analyzed inter-reader discordances in a pool of lung cancer trials using RECIST 1.1. METHODS: We analyzed six lung cancer BICR trials that included 1833 patients (10,684 time points) involving 17 radiologists. We analyzed the rate of discrepancy of each trial at the time-point and patient levels as well as testing inter-trial differences. The analysis of adjudication made it possible to compute the readers' endorsement rates, the root causes of adjudications, and the proportions of "errors" versus "medically justifiable differences". RESULTS: The trials had significantly different discrepancy rates both at the time-point (average = 34.3%) and patient (average = 59.2%) levels. When considering only discrepancies for progressive disease, homogeneous discrepancy rates were found with an average of 32.9%, while readers' endorsement rates ranged between 27.7% and 77.8%. Major causes of adjudication were different per trial, with medically justifiable differences being the most common, triggering 74.2% of total adjudications. CONCLUSIONS: We provide baseline performances for monitoring reader performance in trials with double reads. Intelligent reading system implementation along with appropriate reader training and monitoring are solutions that could mitigate a large portion of the commonly encountered reading errors.

4.
Hum Mol Genet ; 17(23): 3617-30, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18718938

RESUMO

Mutations in SRPX2 (Sushi-Repeat Protein, X-linked 2) cause rolandic epilepsy with speech impairment (RESDX syndrome) or with altered development of the speech cortex (bilateral perisylvian polymicrogyria). The physiological roles of SRPX2 remain unknown to date. One way to infer the function of SRPX2 relies on the identification of the as yet unknown SRPX2 protein partners. Using a combination of interactome approaches including yeast two-hybrid screening, co-immunoprecipitation experiments, cell surface binding and surface plasmon resonance (SPR), we show that SRPX2 is a ligand for uPAR, the urokinase-type plasminogen activator (uPA) receptor. Previous studies have shown that uPAR(-/-) knock-out mice exhibited enhanced susceptibility to epileptic seizures and had brain cortical anomalies consistent with altered neuronal migration and maturation, all features that are reminiscent to the phenotypes caused by SRPX2 mutations. SPR analysis indicated that the p.Y72S mutation associated with rolandic epilepsy and perisylvian polymicrogyria, led to a 5.8-fold gain-of-affinity of SRPX2 with uPAR. uPAR is a crucial component of the extracellular plasminogen proteolysis system; two more SRPX2 partners identified here, the cysteine protease cathepsin B (CTSB) and the metalloproteinase ADAMTS4, are also components of the extracellular proteolysis machinery and CTSB is a well-known activator of uPA. The identification of functionally related SRPX2 partners provides the first and exciting insights into the possible role of SRPX2 in the brain, and suggests that a network of SRPX2-interacting proteins classically involved in the proteolytic remodeling of the extracellular matrix and including uPAR participates in the functioning, in the development and in disorders of the speech cortex.


Assuntos
Córtex Cerebral/metabolismo , Epilepsia Rolândica/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Distúrbios da Fala/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Epilepsia Rolândica/genética , Expressão Gênica , Humanos , Proteínas de Membrana , Proteínas de Neoplasias , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Ratos , Distúrbios da Fala/genética , Técnicas do Sistema de Duplo-Híbrido , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/genética
5.
PLoS One ; 5(10): e13750, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21060786

RESUMO

BACKGROUND: Benign infantile convulsions and paroxysmal dyskinesia are episodic cerebral disorders that can share common genetic bases. They can be co-inherited as one single autosomal dominant trait (ICCA syndrome); the disease ICCA gene maps at chromosome 16p12-q12. Despite intensive and conventional mutation screening, the ICCA gene remains unknown to date. The critical area displays highly complicated genomic architecture and is the site of deletions and duplications associated with various diseases. The possibility that the ICCA syndrome is related to the existence of large-scale genomic alterations was addressed in the present study. METHODOLOGY/PRINCIPAL FINDINGS: A combination of whole genome and dedicated oligonucleotide array comparative genomic hybridization coupled with quantitative polymerase chain reaction was used. Low copy number of a region corresponding to a genomic variant (Variation_7105) located at 16p11 nearby the centromere was detected with statistical significance at much higher frequency in patients from ICCA families than in ethnically matched controls. The genomic variant showed no apparent difference in size and copy number between patients and controls, making it very unlikely that the genomic alteration detected here is ICCA-specific. Furthermore, no other genomic alteration that would directly cause the ICCA syndrome in those nine families was detected in the ICCA critical area. CONCLUSIONS/SIGNIFICANCE: Our data excluded that inherited genomic deletion or duplication events directly cause the ICCA syndrome; rather, they help narrowing down the critical ICCA region dramatically and indicate that the disease ICCA genetic defect lies very close to or within Variation_7105 and hence should now be searched in the corresponding genomic area and its surrounding regions.


Assuntos
Coreia/genética , Cromossomos Humanos Par 16 , Epilepsia Neonatal Benigna/genética , Dosagem de Genes , Estudos de Casos e Controles , Feminino , Humanos , Hibridização In Situ , Lactente , Masculino , Linhagem , Reação em Cadeia da Polimerase , Síndrome
6.
PLoS One ; 5(9)2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20862287

RESUMO

BACKGROUND: Human mesial temporal lobe epilepsies (MTLE) represent the most frequent form of partial epilepsies and are frequently preceded by febrile seizures (FS) in infancy and early childhood. Genetic associations of several complement genes including its central component C3 with disorders of the central nervous system, and the existence of C3 dysregulation in the epilepsies and in the MTLE particularly, make it the C3 gene a good candidate for human MTLE. METHODOLOGY/PRINCIPAL FINDINGS: A case-control association study of the C3 gene was performed in a first series of 122 patients with MTLE and 196 controls. Four haplotypes (HAP1 to 4) comprising GF100472, a newly discovered dinucleotide repeat polymorphism [(CA)8 to (CA)15] in the C3 promoter region showed significant association after Bonferroni correction, in the subgroup of MTLE patients having a personal history of FS (MTLE-FS+). Replication analysis in independent patients and controls confirmed that the rare HAP4 haplotype comprising the minimal length allele of GF100472 [(CA)8], protected against MTLE-FS+. A fifth haplotype (HAP5) with medium-size (CA)11 allele of GF100472 displayed four times higher frequency in controls than in the first cohort of MTLE-FS+ and showed a protective effect against FS through a high statistical significance in an independent population of 97 pure FS. Consistently, (CA)11 allele by its own protected against pure FS in a second group of 148 FS patients. Reporter gene assays showed that GF100472 significantly influenced C3 promoter activity (the higher the number of repeats, the lower the transcriptional activity). Taken together, the consistent genetic data and the functional analysis presented here indicate that a newly-identified and functional polymorphism in the promoter of the complement C3 gene might participate in the genetic susceptibility to human MTLE with a history of FS, and to pure FS. CONCLUSIONS/SIGNIFICANCE: The present study provides important data suggesting for the first time the involvement of the complement system in the genetic susceptibility to epileptic seizures and to epilepsy.


Assuntos
Complemento C3/genética , Epilepsia do Lobo Temporal/genética , Predisposição Genética para Doença , Regiões Promotoras Genéticas , Convulsões Febris/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA