Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
2.
Proc Natl Acad Sci U S A ; 119(35): e2206610119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35947637

RESUMO

The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus-host interfaces. We performed high-throughput evolutionary analyses of 334 SARS-CoV-2-interacting proteins to identify SARS-CoV adaptive loci and uncover functional differences between modern humans, primates, and bats. Using DGINN (Detection of Genetic INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection. Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian orders, suggesting common virus-host interfaces and past epidemics of coronaviruses shaping their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably, residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly evolved in bats but not primates, suggesting different inflammation regulation versus humans. Furthermore, we discovered residues with typical virus-host arms race marks in primates, such as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in vivo interfaces that may be drug targets. Finally, we found that FYCO1 sites under adaptation in primates are those associated with severe COVID-19, supporting their importance in pathogenesis and replication. Overall, we identified adaptations involved in SARS-CoV-2 infection in bats and primates, enlightening modern genetic determinants of virus susceptibility and severity.


Assuntos
COVID-19 , Quirópteros , Evolução Molecular , Adaptação ao Hospedeiro , Primatas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/genética , Quirópteros/virologia , Predisposição Genética para Doença , Adaptação ao Hospedeiro/genética , Humanos , Pandemias , Primatas/genética , Primatas/virologia , SARS-CoV-2/genética , Seleção Genética , Glicoproteína da Espícula de Coronavírus/genética
3.
Proc Natl Acad Sci U S A ; 119(43): e2211467119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251989

RESUMO

Through a screen that combines functional and evolutionary analyses, we identified tripartite motif protein (Trim69), a poorly studied member of the Trim family, as a negative regulator of HIV-1 infection in interferon (IFN)-stimulated myeloid cells. Trim69 inhibits the early phases of infection of HIV-1, but also of HIV-2 and SIVMAC in addition to the negative and positive-strand RNA viruses vesicular stomatitis virus and severe acute respiratory syndrome coronavirus 2, with magnitudes that depend on the combination between cell type and virus. Mechanistically, Trim69 associates directly to microtubules and its antiviral activity is linked to its ability to promote the accumulation of stable microtubules, a program that we uncover to be an integral part of antiviral IFN-I responses in myeloid cells. Overall, our study identifies Trim69 as the antiviral innate defense factor that regulates the properties of microtubules to limit viral spread and highlights the cytoskeleton as an unappreciated battleground in the host-pathogen interactions that underlie viral infections.


Assuntos
Infecções por HIV , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Replicação Viral , Humanos , Imunidade Inata , Interferons/imunologia , Microtúbulos/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Infecções por HIV/imunologia
4.
J Virol ; 95(18): e0043921, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34160255

RESUMO

Interferon-induced transmembrane proteins (IFITMs) are a family of interferon-inducible proteins that inhibit a broad range of viruses by interfering with viral-to-cellular membrane fusion. The antiviral activity of IFITMs is highly regulated by several posttranslational modifications and by a number of protein domains that modulate steady-state protein levels, trafficking, and antiviral effectiveness. Taking advantage of the natural diversity existing among IFITMs of different animal species, we have compared 21 IFITMs for their ability to inhibit HIV-1 at two steps, during virus entry into cells (target cell protection) and during the production of novel virion particles (negative imprinting of virion particles' infectivity). We found a high functional heterogeneity among IFITM homologs with respect to both antiviral modalities, with IFITM members that exhibit enhanced viral inhibition, while others have no ability to block HIV-1. These differences could not be ascribed to known regulatory domains and could only be partially explained through differential protein stability, implying the existence of additional mechanisms. Through the use of chimeras between active and inactive IFITMs, we demonstrate that the cross talk between distinct domains of IFITMs is an important contributor of their antiviral potency. Finally, we identified murine IFITMs as natural variants competent for target cell protection, but not for negative imprinting of virion particles' infectivity, suggesting that the two properties may, at least in principle, be uncoupled. Overall, our results shed new light on the complex relationship between IFITMs and viral infection and point to the cross talk between IFITM domains as a novel layer of regulation of their activity. IMPORTANCE IFITMs are broad viral inhibitors capable of interfering with both early and late phases of the replicative cycle of many different viruses. By comparing 21 IFITM proteins issued from different animal species for their ability to inhibit HIV-1, we have identified several that exhibit either enhanced or impaired antiviral behavior. This functional diversity is not driven by differences in known domains and can only be partly explained through differential protein stability. Chimeras between active and inactive IFITMs point to the cross talk between individual IFITM domains as important for optimal antiviral activity. Finally, we show that murine IFITMs are not capable of decreasing the infectivity of newly produced HIV-1 virion particles, although they retain target cell protection abilities, suggesting that these properties may be, in principle, disconnected. Overall, our results shed new light on the complex layers of regulation of IFITM proteins and enrich our current understanding of these broad antiviral factors.


Assuntos
Antígenos de Diferenciação/metabolismo , Antivirais/farmacologia , Infecções por HIV/prevenção & controle , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Montagem de Vírus , Internalização do Vírus , Sequência de Aminoácidos , Antígenos de Diferenciação/química , Antígenos de Diferenciação/genética , Células HEK293 , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Estabilidade Proteica , Homologia de Sequência
5.
Nucleic Acids Res ; 48(18): e103, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941639

RESUMO

Adaptive evolution has shaped major biological processes. Finding the protein-coding genes and the sites that have been subjected to adaptation during evolutionary time is a major endeavor. However, very few methods fully automate the identification of positively selected genes, and widespread sources of genetic innovations such as gene duplication and recombination are absent from most pipelines. Here, we developed DGINN, a highly-flexible and public pipeline to Detect Genetic INNovations and adaptive evolution in protein-coding genes. DGINN automates, from a gene's sequence, all steps of the evolutionary analyses necessary to detect the aforementioned innovations, including the search for homologs in databases, assignation of orthology groups, identification of duplication and recombination events, as well as detection of positive selection using five methods to increase precision and ranking of genes when a large panel is analyzed. DGINN was validated on nineteen genes with previously-characterized evolutionary histories in primates, including some engaged in host-pathogen arms-races. Our results confirm and also expand results from the literature, including novel findings on the Guanylate-binding protein family, GBPs. This establishes DGINN as an efficient tool to automatically detect genetic innovations and adaptive evolution in diverse datasets, from the user's gene of interest to a large gene list in any species range.


Assuntos
Bases de Dados Genéticas , Primatas/genética , Proteínas/genética , Animais , Evolução Molecular , Variação Genética , Seleção Genética
6.
PLoS Pathog ; 15(10): e1008093, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600344

RESUMO

ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.


Assuntos
Antivirais/farmacologia , Exorribonucleases/farmacologia , Biossíntese de Proteínas , RNA Viral/metabolismo , Estomatite Vesicular/imunologia , Vesiculovirus/imunologia , Replicação Viral/efeitos dos fármacos , Animais , Exorribonucleases/fisiologia , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Estabilidade de RNA , RNA Viral/genética , Estomatite Vesicular/tratamento farmacológico , Estomatite Vesicular/virologia , Vesiculovirus/efeitos dos fármacos
7.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30355696

RESUMO

The interferon-induced transmembrane proteins (IFITMs) are a family of highly related antiviral factors that affect numerous viruses at two steps: in target cells by sequestering incoming viruses in endosomes and in producing cells by leading to the production of virions that package IFITMs and exhibit decreased infectivity. While most studies have focused on the former, little is known about the regulation of the negative imprinting of virion particle infectivity by IFITMs and about its relationship with target cell protection. Using a panel of IFITM3 mutants against HIV-1, we have explored these issues as well as others related to the biology of IFITM3, in particular virion packaging, stability, the relation to CD63/multivesicular bodies (MVBs), the modulation of cholesterol levels, and the relationship between negative imprinting of virions and target cell protection. The results that we have obtained exclude a role for cholesterol and indicate that CD63 accumulation does not directly relate to an antiviral behavior. We have defined regions that modulate the two antiviral properties of IFITM3 as well as novel domains that modulate protein stability and that, in so doing, influence the extent of its packaging into virions. The results that we have obtained, however, indicate that, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for negative imprinting. Finally, while most mutations concomitantly affect target cell protection and negative imprinting, a region in the C-terminal domain (CTD) exhibits a differential behavior, potentially highlighting the regulatory role that this domain may play in the two antiviral activities of IFITM3.IMPORTANCE IFITM proteins have been associated with the sequestration of incoming virions in endosomes (target cell protection) and with the production of virion particles that incorporate IFITMs and exhibit decreased infectivity (negative imprinting of virion infectivity). How the latter is regulated and whether these two antiviral properties are related remain unknown. By examining the behavior of a large panel of IFITM3 mutants against HIV-1, we determined that IFITM3 mutants are essentially packaged into virions proportionally to their intracellular levels of expression. However, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for the antiviral effects. Most mutations were found to concomitantly affect both antiviral properties of IFITM3, but one CTD mutant exhibited a divergent behavior, possibly highlighting a novel regulatory role for this domain. These findings thus advance our comprehension of how this class of broad antiviral restriction factors acts.


Assuntos
HIV-1/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutação , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Vírion/fisiologia , Colesterol/metabolismo , Endossomos , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Domínios Proteicos , Estabilidade Proteica , Proteínas de Ligação a RNA/genética , Tetraspanina 30/metabolismo , Montagem de Vírus
8.
PLoS Pathog ; 13(9): e1006610, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28957419

RESUMO

IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle.


Assuntos
Antígenos de Diferenciação/metabolismo , Vírion , Replicação Viral , Linhagem Celular , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Internalização do Vírus
9.
J Infect Dis ; 218(suppl_5): S666-S671, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30239745

RESUMO

The West African outbreak of Ebola virus (EBOV) infection during 2013-2016 highlighted the need for development of field-applicable therapeutic drugs for this infection. Here we report that mannoside glycolipid conjugates (MGCs) consisting of a trimannose head and a lipophilic chain assembled by a linker inhibit EBOV infection not only of human monocyte-derived dendritic cells and macrophages, but also of a number of susceptible cells. Analysis of the mode of action leads us to conclude that MGCs act directly on cells, notably by preventing virus endocytosis.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Glicolipídeos/farmacologia , Manosídeos/uso terapêutico , Animais , Chlorocebus aethiops , Ebolavirus/fisiologia , Humanos , Células Vero , Internalização do Vírus/efeitos dos fármacos
10.
J Biol Chem ; 292(40): 16527-16538, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28842478

RESUMO

Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics.


Assuntos
Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estomatite Vesicular/metabolismo , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Anticorpos/farmacologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Bulbo Olfatório/metabolismo , Bulbo Olfatório/virologia , Células RAW 264.7 , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Estomatite Vesicular/genética , Vesiculovirus/genética , Proteínas do Envelope Viral/genética
11.
PLoS Pathog ; 12(9): e1005897, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27690375

RESUMO

To better characterize the behavior of HIV-1 capsids we developed EURT, for Entry/Uncoating assay based on core-packaged RNA availability and Translation. EURT is an alternative to Blam-Vpr, but as reporter RNA translation relies on core opening, it can be used to study viral capsids behavior. Our study reveals the existence of two major capsid species, a dead end one in which the viral genome is readily exposed to the cytoplasm and a functional one in which such exposure requires artificial core destabilization. Although reverse transcription drives a faster loss of susceptibility of viral cores to high doses of PF74, it does not lead to higher exposure of the viral genome, implying that viral cores protect the genome irrespectively of reverse transcription. Lastly, IFNα drifts cores from functional to non-functional species, revealing a novel core-destabilizing activity. This assay sheds new light on the behavior of viral cores inside target cells.

12.
J Virol ; 89(7): 4030-4, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609804

RESUMO

The block toward human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) can be relieved by Vpx (viral protein X), which degrades sterile alpha motif-hydroxylase domain 1 (SAMHD1) or by exogenously added deoxynucleosides (dNs), lending support to the hypothesis that SAMHD1 acts by limiting deoxynucleoside triphosphates (dNTPs). This notion has, however, been questioned. We show that while dNs and Vpx increase the infectivity of HIV-1, only the latter restores the infectivity of a simian immunodeficiency virus of macaques variant, SIVMACΔVpx virus. This distinct behavior seems to map to CA, suggesting that species-specific CA interactors modulate infection of DCs.


Assuntos
Proteínas do Capsídeo/metabolismo , Células Dendríticas/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Nucleosídeos/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Células Cultivadas , HIV-1/crescimento & desenvolvimento , Humanos , Macaca , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento
13.
J Virol ; 89(13): 6824-34, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903339

RESUMO

UNLABELLED: Adeno-associated virus (AAV) is a helper-dependent parvovirus that requires coinfection with adenovirus (AdV) or herpes simplex virus 1 (HSV-1) to replicate. In the absence of the helper virus, AAV can persist in an episomal or integrated form. Previous studies have analyzed the DNA damage response (DDR) induced upon AAV replication to understand how it controls AAV replication. In particular, it was shown that the Mre11-Rad50-Nbs1 (MRN) complex, a major player of the DDR induced by double-stranded DNA breaks and stalled replication forks, could negatively regulate AdV and AAV replication during coinfection. In contrast, MRN favors HSV-1 replication and is recruited to AAV replication compartments that are induced in the presence of HSV-1. In this study, we examined the role of MRN during AAV replication induced by HSV-1. Our results indicated that knockdown of MRN significantly reduced AAV DNA replication after coinfection with wild-type (wt) HSV-1 or HSV-1 with the polymerase deleted. This effect was specific to wt AAV, since it did not occur with recombinant AAV vectors. Positive regulation of AAV replication by MRN was dependent on its DNA tethering activity but did not require its nuclease activities. Importantly, knockdown of MRN also negatively regulated AAV integration within the human AAVS1 site, both in the presence and in the absence of HSV-1. Altogether, this work identifies a new function of MRN during integration of the AAV genome and demonstrates that this DNA repair complex positively regulates AAV replication in the presence of HSV-1. IMPORTANCE: Viral DNA genomes trigger a DNA damage response (DDR), which can be either detrimental or beneficial for virus replication. Adeno-associated virus (AAV) is a defective parvovirus that requires the help of an unrelated virus such as adenovirus (AdV) or herpes simplex virus 1 (HSV-1) for productive replication. Previous studies have demonstrated that the cellular Mre11-Rad50-Nbs1 (MRN) complex, a sensor and regulator of the DDR, negatively regulates AAV replication during coinfection with AdV, which counteracts this effect by inactivating the complex. Here, we demonstrate that MRN positively regulates AAV replication during coinfection with HSV-1. Importantly, our study also indicates that MRN also favors integration of AAV genomes within the human AAVS1 site. Altogether, this work indicates that MRN differentially regulates AAV replication depending on the helper virus which is present and identifies a new function of this DNA repair complex during AAV integration.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dependovirus/fisiologia , Herpesvirus Humano 1/fisiologia , Proteínas Nucleares/metabolismo , Integração Viral , Replicação Viral , Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/genética
14.
Med Sci (Paris) ; 31(4): 377-82, 2015 Apr.
Artigo em Francês | MEDLINE | ID: mdl-25958755

RESUMO

During evolution, organisms developed adaptative mechanisms to survive continuous aggressions from a variety of pathogens. Among these lines of defence, many cellular proteins have been described to modulate viral replication and are the subject of intense study. This review will focus on IFITM (interferon induced transmembrane protein), a family of proteins that act against a particularly wide range of viruses. We will summarize our knowledge of the antiviral mechanisms used by IFITM to interfere with the replication of several viruses, and more specifically HIV (human immunodeficiency virus).


Assuntos
Antivirais , Imunidade Inata/genética , Proteínas de Membrana/fisiologia , Vírus/imunologia , Animais , Antígenos de Diferenciação/fisiologia , Antivirais/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Transporte Proteico
17.
Retrovirology ; 11: 103, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25422070

RESUMO

BACKGROUND: Interferon induced transmembrane proteins 1, 2 and 3 (IFITMs) belong to a family of highly related antiviral factors that have been shown to interfere with a large spectrum of viruses including Filoviruses, Coronaviruses, Influenza virus, Dengue virus and HIV-1. In all these cases, the reported mechanism of antiviral inhibition indicates that the pool of IFITM proteins present in target cells blocks incoming viral particles in endosomal vesicles where they are subsequently degraded. RESULTS: In this study, we describe an additional mechanism through which IFITMs block HIV-1. In virus-producing cells, IFITMs coalesce with forming virions and are incorporated into viral particles. Expression of IFITMs during virion assembly leads to the production of virion particles of decreased infectivity that are mostly affected during entry in target cells. This mechanism of inhibition is exerted against different retroviruses and does not seem to be dependent on the type of Envelope present on retroviral particles. CONCLUSIONS: The results described here identify a novel mechanism through which IFITMs affect HIV-1 infectivity during the late phases of the viral life cycle. Put in the context of data obtained by other laboratories, these results indicate that IFITMs can target HIV at two distinct moments of its life cycle, in target cells as well as in virus-producing cells. These results raise the possibility that IFITMs could similarly affect distinct steps of the life cycle of a number of other viruses.


Assuntos
Antígenos de Diferenciação/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Montagem de Vírus , Internalização do Vírus , Antivirais/metabolismo , HIV-1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Humanos
18.
Clin Immunol ; 155(1): 17-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25110157

RESUMO

TNF-related apoptosis ligand (TRAIL) induces apoptosis of HIV-1-exposed CD4 T cells expressing the death receptor 5 (DR5) in vitro and has been associated with reduced CD4 T cell number in viremic HIV-1-infected patients. Alterations of the TRAIL/DR5 apoptotic pathway could be involved in the absence of massive CD4 T cell depletion in HIV-1-infected controllers (HIC). We studied here apoptosis of CD4 T cells from HIV-infected progressors and controllers. Reduced apoptosis of CD4 T cells from HIC was observed upon HIV stimulation. This lower apoptosis correlated with a deficiency of DR5 cell surface expression by CD4 T cells upon HIV-1 stimulation. The significant lower apoptosis observed in CD4 T cells after HIV exposure, associated with lower expression of membrane DR5 could explain the better survival of HIV-specific CD4 T cells from HIV controllers. The levels of DR5 cell surface expression on CD4 T cells could represent a new prognostic marker.


Assuntos
Apoptose/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Regulação da Expressão Gênica/imunologia , Infecções por HIV/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adulto , Membrana Celular , HIV/fisiologia , Infecções por HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Viremia
19.
J Virol ; 87(5): 2587-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255800

RESUMO

Type I interferons induce a complex transcriptional program that leads to a generalized antiviral response against a large panel of viruses, including human immunodeficiency virus type 1 (HIV-1). However, despite the fact that interferons negatively regulate HIV-1 ex vivo, a chronic interferon state is linked to the progression of AIDS and to robust viral replication, rather than protection, in vivo. To explain this apparent contradiction, we hypothesized that HIV-1 may have evolved a partial resistance to interferon, and to test this hypothesis, we analyzed the effects of alpha interferon (IFN-α) on the infectivity of HIV-1, human immunodeficiency virus type 2 (HIV-2), and rhesus monkey simian immunodeficiency virus (SIVmac). The results we obtained indicate that HIV-1 is more resistant to an IFN-α-induced response than are HIV-2 and SIVmac. Our data indicate that the accumulation of viral DNA is more compromised following the infection of IFN-α-treated cells with HIV-2 and SIVmac than with HIV-1. This defect correlates with a faster destabilization of HIV-2 viral nucleoprotein complexes (VNCs), suggesting a link between VNC destabilization and impaired viral DNA (vDNA) accumulation. The differential susceptibilities to IFN-α of the primate lentiviruses tested here do not map to the capsid protein (CA), excluding de facto a role for human tripartite motif protein isoform 5 alpha (Trim5α) in this restriction; this also suggests that an additional restriction mechanism differentially affects primate lentivirus infection. The different behaviors of HIV-1 and HIV-2 with respect to IFN-α responses may account at least in part for the differences in pathogenesis observed between these two virus types.


Assuntos
HIV-1/fisiologia , HIV-2/fisiologia , Interferon-alfa/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral , Proteínas do Capsídeo/efeitos dos fármacos , Linhagem Celular Tumoral , DNA Viral/genética , DNA Viral/metabolismo , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/imunologia , HIV-2/imunologia , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Macrófagos/virologia , Glicoproteínas de Membrana , Proteínas dos Retroviridae/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
20.
J Virol ; 87(1): 234-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23077304

RESUMO

Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.


Assuntos
Células Dendríticas/virologia , Vetores Genéticos , HIV-1/imunologia , Monócitos/virologia , Transdução Genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Células Cultivadas , HIV-1/genética , HIV-2/genética , Humanos , Vírus da Imunodeficiência Símia/genética , Proteínas Virais Reguladoras e Acessórias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA