Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chempluschem ; : e202400130, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526220

RESUMO

The research of molecular capsules offers high application potential and numerous benefits in various fields. With the aim of forming supramolecular capsules which can be reversibly assembled and dissociated by simple external stimuli, we studied interactions between calixarenes containing urea and carboxylate moieties. To this end two ureido-derivatives of p-tert-butylcalix[4]arene comprising phenylureido-moieties and diacetate-calix[4]arenes were prepared. The binding of acetate by ureido-derivatives of calixarene in acetonitrile was characterized, revealing high affinity of ureido-calixarenes for carboxylates. This suggested high potential for uniting the complementary calix[4]arenes via H-bonds between carboxylic groups and urea moieties. The assembly of calixarenes was examined in detail by means of UV, 1H NMR, ITC, DOSY, MS, and conductometry providing insight in the structure-stability relationship. The tetraureido-calixarene derivative formed the most stable heterodimers with diacetate-calix[4]arenes featuring practically quantitative association upon mixing the two calixarene counterparts. The possibility of controlling the formation of the heterodimer by protonating the carboxylates, thereby hindering the interactions critical for capsule assembly, was investigated. Indeed, the reversibility of breaking and re-forming the heterodimer by addition of an acid and base to the solution containing urea- and carboxylate-derivative calix[4]arene was demonstrated using NMR spectroscopy.

2.
RSC Adv ; 11(39): 23992-24000, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479025

RESUMO

In this work the anion-binding properties of three aromatic sulfonylurea derivatives in acetonitrile and dimethyl sulfoxide were explored by means of NMR titrations. It was found that the studied receptors effectively bind anions of low basicity (Cl-, Br-, I-, NO3 - and HSO4 -). The stoichiometry of the complexes with receptors containing one binding site was 1 : 1 exclusively, whereas in the case of the receptor containing two sulfonylurea groups 1 : 2 (receptor : anion) complexes were also detected in some cases. The presence of strongly basic anions (acetate and dihydrogen phosphate) led to the deprotonation of the sulfonylurea moiety. This completely hindered its anion-binding properties in DMSO and only proton transfer occurred upon the addition of basic anions to the studied receptors. In MeCN, a complex system of equilibria including both ligand deprotonation and anion binding was established. Since ionisation of receptors was proven to be a decisive factor defining the behaviour of the sulfonylurea receptors, their pK a values were determined using several deprotonation agents in both solvents. The results were interpreted in the context of receptor structures and solvent properties and applied for the identification of the interactions with basic anions.

3.
Phys Rev Lett ; 84(6): 1120-3, 2000 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-11017458

RESUMO

Four different combinations of 9644Ru and 9640Zr nuclei, both as projectile and target, were investigated at the same bombarding energy of 400A MeV using a 4pi detector. The degree of isospin mixing between projectile and target nucleons is mapped across a large portion of the phase space using two different isospin-tracer observables, the number of measured protons and the tritium to 3He yield ratio. The experimental results show that the global equilibrium is not reached even in the most central collisions. Quantitative measures of stopping and mixing are extracted from the data. They are found to exhibit a quite strong sensitivity to the in-medium ( n,n) cross section used in microscopic transport calculations.

4.
6.
Phys Rev Lett ; 67(5): 572-575, 1991 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-10044932
10.
12.
Phys Rev C Nucl Phys ; 33(4): 1275-1279, 1986 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9953273
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA