Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Neurobiol ; 55(4): 3301-3315, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28488209

RESUMO

MicroRNAs are a class of non-coding RNAs with a growing relevance in the regulation of gene expression related to brain function and plasticity. They have the potential to orchestrate complex phenomena, such as the neuronal response to homeostatic challenges. We previously demonstrated the involvement of miR-135a in the regulation of early stress response. In the present study, we examine the role of miR-135a in stress-related behavior. We show that the knockdown (KD) of miR-135a in the mouse amygdala induces an increase in anxiety-like behavior. Consistently with behavioral studies, electrophysiological experiments in acute brain slices indicate an increase of amygdala spontaneous excitatory postsynaptic currents, as a result of miR-135a KD. Furthermore, we presented direct evidences, by in vitro assays and in vivo miRNA overexpression in the amygdala, that two key regulators of synaptic vesicle fusion, complexin-1 and complexin-2, are direct targets of miR-135a. In vitro analysis of miniature excitatory postsynaptic currents on miR-135a KD primary neurons indicates unpaired quantal excitatory neurotransmission. Finally, increased levels of complexin-1 and complexin-2 proteins were detected in the mouse amygdala after acute stress, accordingly to the previously observed stress-induced miR-135a downregulation. Overall, our results unravel a previously unknown miRNA-dependent mechanism in the amygdala for regulating anxiety-like behavior, providing evidences of a physiological role of miR-135a in the modulation of presynaptic mechanisms of glutamatergic neurotransmission.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Ansiedade/genética , Ansiedade/fisiopatologia , Comportamento Animal , MicroRNAs/metabolismo , Transmissão Sináptica/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Tonsila do Cerebelo/patologia , Animais , Linhagem Celular Tumoral , Potenciais Pós-Sinápticos Excitadores , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hipocampo/patologia , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética
2.
Neuropharmacology ; 116: 82-97, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27989680

RESUMO

The accumulation of ß-amyloid (Aß) is one of the hallmarks of Alzheimer disease (AD). Beyond the inflammatory reactions promoted by Aß, it has been demonstrated that the prokineticin (PK) system, composed of the chemokine prokineticin 2 (PK2) and its receptors, is involved in Aß toxicity. In this study we have analyzed how the Aß chronic treatment affects the glutamatergic transmission on neurons from primary cortical cultures, clearly demonstrating the PK system involvement on its action mechanism. In fact, we have observed a significant increase of the ionic current through the AMPA receptors in primary cortical neurons and an up-regulation of the PK system in cultures chronically treated with Aß. All effects were nullified by the prokineticin antagonist PC-1. Moreover, we have herein firstly demonstrated that the incubation of primary cortical culture with Bv8, the amphibian homologue of PK2, was able to increase in neurons the AMPA currents at specific doses and exposure times, measured both as evoked and as spontaneous currents. This effect was not due to a modification of the AMPA receptor subunit expression. In contrast, the up-modulation of AMPA currents were blocked by PC-1 and were mediated by the activation of the intracellular protein kinase C (PKC) transduction pathways because Gö6983, the PKC inhibitor added in the medium, nullified the effect. Finally, cellular death induced by kainate was also reduced following treatment with PC1. In conclusion, our results show that the prokineticin system may be a key mediator in the Aß-induced neuronal damage, suggesting PK antagonists as new therapeutic compounds to ameliorate the AD progression.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas de Anfíbios/uso terapêutico , Peptídeos beta-Amiloides/toxicidade , Ácido Glutâmico/metabolismo , Neuropeptídeos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/patologia , Animais , Anuros , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Hormônios Gastrointestinais/metabolismo , Indóis/farmacologia , Maleimidas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeos/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA