Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Ther ; 32(10): 3356-3371, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-38981468

RESUMO

Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.


Assuntos
Dependovirus , Vetores Genéticos , Hepatócitos , Nanopartículas , RNA Mensageiro , Transgenes , Transposases , Animais , Dependovirus/genética , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Hepatócitos/metabolismo , Transposases/genética , Transposases/metabolismo , Nanopartículas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Terapia Genética/métodos , Humanos , Expressão Gênica , Lipídeos/química , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Lipossomos
2.
J Gene Med ; 26(8): e3726, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160647

RESUMO

BACKGROUND: Conventional adeno-associated viral (AAV) vectors, while highly effective in quiescent cells such as hepatocytes in the adult liver, confer less durable transgene expression in proliferating cells owing to episome loss. Sustained therapeutic success is therefore less likely in liver disorders requiring early intervention. We have previously developed a hybrid, dual virion approach, recombinant AAV (rAAV)/piggyBac transposon system capable of achieving stable gene transfer in proliferating hepatocytes at levels many fold above conventional AAV vectors. An alternative transposon system, Sleeping Beauty, has been widely used for ex vivo gene delivery; however liver-targeted delivery using a hybrid rAAV/Sleeping Beauty approach remains relatively unexplored. METHODS: We investigated the capacity of a Sleeping Beauty (SB)-based dual rAAV virion approach to achieve stable and efficient gene transfer to the newborn murine liver using transposable therapeutic cassettes encoding coagulation factor IX or ornithine transcarbamylase (OTC). RESULTS: At equivalent doses, rAAV/SB100X transduced hepatocytes with high efficiency, achieving stable expression into adulthood. Compared with conventional AAV, the proportion of hepatocytes transduced, and factor IX and OTC activity levels, were both markedly increased. The proportion of hepatocytes stably transduced increased 4- to 8-fold from <5%, and activity levels increased correspondingly, with markedly increased survival and stable urinary orotate levels in the OTC-deficient Spfash mouse following elimination of residual endogenous murine OTC. CONCLUSIONS: The present study demonstrates the first in vivo utility of a hybrid rAAV/SB100X transposon system to achieve stable long-term therapeutic gene expression following delivery to the highly proliferative newborn mouse liver. These results have relevance to the treatment of genetic metabolic liver diseases with neonatal onset.


Assuntos
Animais Recém-Nascidos , Elementos de DNA Transponíveis , Dependovirus , Técnicas de Transferência de Genes , Vetores Genéticos , Hepatócitos , Fígado , Transdução Genética , Animais , Dependovirus/genética , Elementos de DNA Transponíveis/genética , Fígado/metabolismo , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Hepatócitos/metabolismo , Fator IX/genética , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Transposases/genética , Transposases/metabolismo , Humanos , Transgenes , Terapia Genética/métodos , Camundongos Endogâmicos C57BL
3.
J Pediatr Gastroenterol Nutr ; 68(4): 509-516, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30418409

RESUMO

OBJECTIVE: Enteric bacterial pathogens cause diarrheal disease and mortality at significant rates throughout the world, particularly in children younger than 5 years. Our ability to combat bacterial pathogens has been hindered by antibiotic resistance, a lack of effective vaccines, and accurate models of infection. With the renewed interest in bacteriophage therapy, we sought to use a novel human intestinal model to investigate the efficacy of a newly isolated bacteriophage against Shigella flexneri. METHODS: An S. flexneri 2457T-specific bacteriophage was isolated and assessed through kill curve experiments and infection assays with colorectal adenocarcinoma HT-29 cells and a novel human intestinal organoid-derived epithelial monolayer model. In our treatment protocol, organoids were generated from intestinal crypt stem cells, expanded in culture, and seeded onto transwells to establish 2-dimensional monolayers that differentiate into intestinal cells. RESULTS: The isolated bacteriophage efficiently killed S. flexneri 2457T, other S. flexneri strains, and a strain of 2457T harboring an antibiotic resistance cassette. Analyses with laboratory and commensal Escherichia coli strains demonstrated that the bacteriophage was specific to S. flexneri, as observed under co-culture conditions. Importantly, the bacteriophage prevented both S. flexneri 2457T epithelial cell adherence and invasion in both infection models. CONCLUSIONS: Bacteriophages offer feasible alternatives to antibiotics for eliminating enteric pathogens, confirmed here by the bacteriophage-targeted killing of S. flexneri. Furthermore, application of the organoid model has provided important insight into Shigella pathogenesis and bacteriophage-dependent intervention strategies. The screening platform described herein provides proof-of-concept analysis for the development of novel bacteriophage therapies to target antibiotic-resistant pathogens.


Assuntos
Diarreia Infantil/terapia , Escherichia coli , Intestinos/microbiologia , Terapia por Fagos , Shigella flexneri , Criança , Diarreia Infantil/microbiologia , Feminino , Células HT29 , Humanos , Lactente , Recém-Nascido , Masculino
4.
Nat Mater ; 13(5): 515-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24658114

RESUMO

Many natural biological systems--such as biofilms, shells and skeletal tissues--are able to assemble multifunctional and environmentally responsive multiscale assemblies of living and non-living components. Here, by using inducible genetic circuits and cellular communication circuits to regulate Escherichia coli curli amyloid production, we show that E. coli cells can organize self-assembling amyloid fibrils across multiple length scales, producing amyloid-based materials that are either externally controllable or undergo autonomous patterning. We also interfaced curli fibrils with inorganic materials, such as gold nanoparticles (AuNPs) and quantum dots (QDs), and used these capabilities to create an environmentally responsive biofilm-based electrical switch, produce gold nanowires and nanorods, co-localize AuNPs with CdTe/CdS QDs to modulate QD fluorescence lifetimes, and nucleate the formation of fluorescent ZnS QDs. This work lays a foundation for synthesizing, patterning, and controlling functional composite materials with engineered cells.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Engenharia Celular/métodos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Biofilmes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ouro/química , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanotecnologia , Pontos Quânticos/química
5.
Cell Syst ; 12(9): 860-872.e5, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34358440

RESUMO

The ability to efficiently and dynamically change information stored in genomes would enable powerful strategies for studying cell biology and controlling cellular phenotypes. Current recombineering-mediated DNA writing platforms in bacteria are limited to specific laboratory conditions, often suffer from suboptimal editing efficiencies, and are not suitable for in situ applications. To overcome these limitations, we engineered a retroelement-mediated DNA writing system that enables efficient and precise editing of bacterial genomes without the requirement for target-specific elements or selection. We demonstrate that this DNA writing platform enables a broad range of applications, including efficient, scarless, and cis-element-independent editing of targeted microbial genomes within complex communities, the high-throughput mapping of spatial information and cellular interactions into DNA memory, and the continuous evolution of cellular traits.


Assuntos
Bactérias , Retroelementos , Bactérias/genética , Genoma Bacteriano/genética , Retroelementos/genética , Redação
6.
Science ; 360(6391): 915-918, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29798884

RESUMO

Biomolecular monitoring in the gastrointestinal tract could offer rapid, precise disease detection and management but is impeded by access to the remote and complex environment. Here, we present an ingestible micro-bio-electronic device (IMBED) for in situ biomolecular detection based on environmentally resilient biosensor bacteria and miniaturized luminescence readout electronics that wirelessly communicate with an external device. As a proof of concept, we engineer heme-sensitive probiotic biosensors and demonstrate accurate diagnosis of gastrointestinal bleeding in swine. Additionally, we integrate alternative biosensors to demonstrate modularity and extensibility of the detection platform. IMBEDs enable new opportunities for gastrointestinal biomarker discovery and could transform the management and diagnosis of gastrointestinal disease.


Assuntos
Técnicas Biossensoriais/instrumentação , Gastroenteropatias/diagnóstico , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiopatologia , Monitorização Fisiológica/instrumentação , Probióticos , Animais , Equipamentos e Provisões Elétricas , Gastroenteropatias/microbiologia , Hemorragia Gastrointestinal/diagnóstico , Heme/química , Suínos
7.
ACS Synth Biol ; 6(2): 266-275, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27794590

RESUMO

Amyloids are highly ordered, hierarchal protein nanoassemblies. Functional amyloids in bacterial biofilms, such as Escherichia coli curli fibers, are formed by the polymerization of monomeric proteins secreted into the extracellular space. Curli is synthesized by living cells, is primarily composed of the major curlin subunit CsgA, and forms biological nanofibers with high aspect ratios. Here, we explore the application of curli fibers for nanotechnology by engineering curli to mediate tunable biological interfaces with inorganic materials and to controllably form gold nanoparticles and gold nanowires. Specifically, we used cell-synthesized curli fibers as templates for nucleating and growing gold nanoparticles and showed that nanoparticle size could be modulated as a function of curli fiber gold-binding affinity. Furthermore, we demonstrated that gold nanoparticles can be preseeded onto curli fibers and followed by gold enhancement to form nanowires. Using these two approaches, we created artificial cellular systems that integrate inorganic-organic materials to achieve tunable electrical conductivity. We envision that cell-synthesized amyloid nanofibers will be useful for interfacing abiotic and biotic systems to create living functional materials..


Assuntos
Amiloide/metabolismo , Escherichia coli/metabolismo , Nanoestruturas/microbiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Condutividade Elétrica , Proteínas de Escherichia coli/metabolismo , Ouro/metabolismo , Nanopartículas Metálicas/microbiologia , Nanofibras , Nanotecnologia/métodos , Nanofios/microbiologia , Tamanho da Partícula
8.
Adv Drug Deliv Rev ; 105(Pt A): 44-54, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27158095

RESUMO

The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota.


Assuntos
Microbiota , Animais , Anti-Infecciosos/uso terapêutico , Bioengenharia , Humanos , Probióticos/uso terapêutico
9.
Nat Biotechnol ; 32(11): 1141-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25240928

RESUMO

Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.


Assuntos
Resistência Microbiana a Medicamentos/genética , Escherichia coli Êntero-Hemorrágica/genética , Marcação de Genes , RNA Guia de Cinetoplastídeos/genética , Ribonucleases/genética , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Bacteriófagos/genética , Sequência de Bases/genética , Sistemas CRISPR-Cas , Carbapenêmicos/uso terapêutico , Escherichia coli Êntero-Hemorrágica/patogenicidade , Plasmídeos
10.
Curr Opin Microbiol ; 19: 59-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24997401

RESUMO

Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome.


Assuntos
Bacteriófagos , Doenças Transmissíveis , Biologia Sintética , Pesquisa/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA