RESUMO
Cellulose nanocrystals (CNCs) continue to gain increasing attention in the materials community as sustainable nanoparticles with unique chemical and mechanical properties. Their nanoscale dimensions, biocompatibility, biodegradability, large surface area, and low toxicity make them promising materials for biomedical applications. Here, we disclose a facile synthesis of poly(2-aminoethylmethacrylate) (poly(AEM)) and poly(N-(2-aminoethylmethacrylamide) (poly(AEMA)) CNC brushes via the surface-initiated single-electron-transfer living radical polymerization technique. The resulting modified CNCs were characterized for their chemical and morphological features using a combination of analytical, spectroscopic, and microscopic techniques. Zeta potential measurements indicated a positive surface charge, and further proof of the cationic nature was confirmed by gold deposition as evidenced by electron microscopy. The cytotoxicity of these cationic modified CNCs was evaluated utilizing a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in two different cell lines, J774A1 (mouse monocyte cells) and MCF-7 (human breast adenocarcinoma cells). The results indicated that none of the cationic modified CNCs decreased cell viability at low concentrations, which could be suitable for biomedical applications.
Assuntos
Celulose/química , Metacrilatos/química , Metacrilatos/farmacologia , Nanopartículas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Celulose/farmacologia , Celulose/ultraestrutura , Humanos , Células MCF-7 , Camundongos , Microscopia Eletrônica , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
In general protein posttranslation modifications (PTMs) involve the covalent addition of functional groups or molecules to specific amino acid residues in proteins. These modifications include phosphorylation, glycosylation, S-nitrosylation, acetylation, lipidation, among others (Angew Chem Int Ed Engl 44(45):7342-7372, 2005). Although other amino acids can undergo different kinds of oxidative posttranslational modifications (oxPTMs) (Exp Gerontol 36(9):1495-1502, 2001), in this chapter oxPTM will be considered specifically related to Cysteine oxidation, and redox proteomics here is translated as a comprehensive investigation of oxPTMs, in biological systems, using diverse technical approaches. Protein Cysteine residues are not the only amino acid that can be target for oxidative modifications in proteins (Exp Gerontol 36(9):1495-1502, 2001; Biochim Biophys Acta 1814(12):1785-1795, 2011), but certainly it is among the most reactive amino acid (Nature 468(7325):790-795, 2010). Interestingly, it is one of the least abundant amino acid, but it often occurs in the functional sites of proteins (J Mol Biol 404(5):902-916, 2010). In addition, the majority of the Cysteine oxidations are reversible, indicating potential regulatory mechanism of proteins. The global analysis of oxPTMs has been increasingly recognized as an important area of proteomics, because not only maps protein caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS), but also explores protein modulation involving ROS/RNS. Furthermore, the tools and strategies to study this type oxidation are also very abundant and developed, offering high degree of accuracy on the results. As a consequence, the redox proteomics field focuses very much on analyzing Cysteine oxidation in proteins under several experimental conditions and diseases states. Therefore, the identification and localization of oxPTMs within cellular milieu became critical to understand redox regulation of proteins in physiological and pathological conditions, and consequently an important information to develop better strategies for treatment and prevention of diseases associated with oxidative stress.There is a wide range of techniques available to investigate oxPTMs, including gel-based and non-gel-based separation approaches to be combined with sophisticated methods of detection, identification, and quantification of these modifications. The strategies and approaches to study oxPTMs and the respective applications related to physiological and pathological conditions will be discussed in more detail in this chapter.
Assuntos
Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Cisteína/química , Cisteína/metabolismo , Humanos , Oxirredução , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Oxigênio/químicaRESUMO
IL-1ß is a cytokine critical to several inflammatory diseases in which pathogenic Th17 responses are implicated. Activation of the NLRP3 inflammasome by microbial and environmental stimuli can enable the caspase-1-dependent processing and secretion of IL-1ß. The acute-phase protein serum amyloid A (SAA) is highly induced during inflammatory responses, wherein it participates in systemic modulation of innate and adaptive immune responses. Elevated levels of IL-1ß, SAA, and IL-17 are present in subjects with severe allergic asthma, yet the mechanistic relationship among these mediators has yet to be identified. In this study, we demonstrate that Saa3 is expressed in the lungs of mice exposed to several mixed Th2/Th17-polarizing allergic sensitization regimens. SAA instillation into the lungs elicits robust TLR2-, MyD88-, and IL-1-dependent pulmonary neutrophilic inflammation. Furthermore, SAA drives production of IL-1α, IL-1ß, IL-6, IL-23, and PGE(2), causes dendritic cell (DC) maturation, and requires TLR2, MyD88, and the NLRP3 inflammasome for secretion of IL-1ß by DCs and macrophages. CD4(+) T cells polyclonally stimulated in the presence of conditioned media from SAA-exposed DCs produced IL-17, and the capacity of polyclonally stimulated splenocytes to secrete IL-17 is dependent upon IL-1, TLR2, and the NLRP3 inflammasome. Additionally, in a model of allergic airway inflammation, administration of SAA to the lungs functions as an adjuvant to sensitize mice to inhaled OVA, resulting in leukocyte influx after Ag challenge and a predominance of IL-17 production from restimulated splenocytes that is dependent upon IL-1R signaling.
Assuntos
Alérgenos/fisiologia , Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Proteína Amiloide A Sérica/fisiologia , Células Th17/imunologia , Células Th17/patologia , Alérgenos/genética , Animais , Proteínas de Transporte/genética , Polaridade Celular/genética , Polaridade Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Inflamassomos/deficiência , Inflamassomos/genética , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Interleucina-1alfa/antagonistas & inibidores , Interleucina-1alfa/fisiologia , Interleucina-1beta/metabolismo , Interleucina-1beta/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hipersensibilidade Respiratória/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Baço/imunologia , Baço/metabolismo , Baço/patologia , Células Th17/metabolismo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/fisiologiaRESUMO
Cellulose nanocrystals (CNCs) display remarkable strength and physicochemical properties with significant potential applications. To better understand the potential adjuvanticity of a nanomaterial, it is important to investigate the extent of the immunological response, the mechanisms by which they elicit this response, and how this response is associated with their physicochemical characteristics. In this study, we investigated the potential mechanisms of immunomodulation and redox activity of two chemically related cationic CNC derivatives (CNC-METAC-1B and CNC-METAC-2B), using human peripheral blood mononuclear cells and mouse macrophage cells (J774A.1). Our data demonstrated that the biological effects caused by these nanomaterials occurred mainly with short term exposure. We observed opposite immunomodulatory activity between the tested nanomaterials. CNC-METAC-2B, induced IL-1ß secretion at 2 h while CNC-METAC-1B decreased it at 24 h of treatment. In addition, both nanomaterials caused more noticeable increases in mitochondrial reactive oxygen species (ROS) at early time. The differences in apparent sizes of the two cationic nanomaterials could explain, at least in part, the discrepancies in biological effects, despite their closely related surface charges. This work provides initial insights about the complexity of the in vitro mechanism of action of these nanomaterials as well as foundation knowledge for the development of cationic CNCs as potential immunomodulators.
Assuntos
Celulose , Nanoestruturas , Animais , Humanos , Camundongos , Celulose/toxicidade , Leucócitos Mononucleares , Nanopartículas/toxicidade , Nanopartículas/química , Nanoestruturas/toxicidade , Espécies Reativas de OxigênioRESUMO
BACKGROUND: While many of the contributing cell types and mediators of allergic asthma are known, less well understood are the factors that induce allergy in the first place. Amongst the mediators speculated to affect initial allergen sensitization and the development of pathogenic allergic responses to innocuous inhaled antigens and allergens are exogenously or endogenously generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). SCOPE OF REVIEW: The interactions between ROS/RNS, dendritic cells (DCs), and CD4(+) T cells, as well as their modulation by lung epithelium, are of critical importance for the genesis of allergies that later manifest in allergic asthma. Therefore, this review will primarily focus on the initiation of pulmonary allergies and the role that ROS/RNS may play in the steps therein, using examples from our own work on the roles of NO(2) exposure and airway epithelial NF-κB activation. MAJOR CONCLUSIONS: Endogenously generated ROS/RNS and those encountered from environmental sources interact with epithelium, DCs, and CD4(+) T cells to orchestrate allergic sensitization through modulation of the activities of each of these cell types, which quantitiatively and qualitatively dictate the degree and type of the allergic asthma phenotype. GENERAL SIGNIFICANCE: Knowledge of the effects of ROS/RNS at the molecular and cellular levels has the potential to provide powerful insight into the balance between inhalational tolerance (the typical immunologic response to an innocuous inhaled antigen) and allergy, as well as to potentially provide mechanistic targets for the prevention and treatment of asthma.
Assuntos
Asma/etiologia , Linfócitos T CD4-Positivos/fisiologia , Células Dendríticas/fisiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/fisiologia , Animais , Asma/metabolismo , Humanos , NF-kappa B/fisiologiaRESUMO
Interest in cellulose-based nanomaterials has continued to increase dramatically in the past few years, especially with advances in the production routes of nanocellulose-such as cellulose nanocrystals (CNC), cellulose nanofibrils (CNF) and bacterial nanocellulose (BNC)-that tailor their performances [...].
RESUMO
An emerging interest regarding nanoparticles (NPs) concerns their potential immunomodulatory and pro-inflammatory activities, as well as their impact in the circulatory system. These biological activities of NPs can be related to the intensity and type of the responses, which can raise concerns about adverse side effects and limit the biomedical applicability of these nanomaterials. Therefore, the purpose of this study was to investigate the impact of a library of cationic cellulose nanocrystals (CNCs) in the human blood and endothelial cells using cell-based assays. First, we evaluated whether the cationic CNCs would cause hemolysis and aggregation or alteration on the morphology of red blood cells (RBC). We observed that although these nanomaterials did not alter RBC morphology or cause aggregation, at 24 h exposure, a mild hemolysis was detected mainly with unmodified CNCs. Then, we analyzed the effect of various concentrations of CNCs on the cell viability of human umbilical vein endothelial cells (HUVECs) in a time-dependent manner. None of the cationic CNCs caused a dose-response decrease in the cell viability of HUVEC at 24 h or 48 h of exposure. The findings of this study, together with the immunomodulatory properties of these cationic CNCs previously published, support the development of engineered cationic CNCs for biomedical applications, in particular as vaccine nanoadjuvants.
RESUMO
NF-kappaB activation in the airway epithelium has been established as a critical pathway in ovalbumin (Ova)-induced airway inflammation in BALB/c mice (Poynter ME, Cloots R, van Woerkom T, Butnor KJ, Vacek P, Taatjes DJ, Irvin CG, Janssen-Heininger YM. J Immunol 173: 7003-7009, 2004). BALB/c mice are susceptible to the development of allergic airway disease, whereas other strains of mice, such as C57BL/6, are considered more resistant. The goal of the present study was to determine the proximal signals required for NF-kappaB activation in the airway epithelium in allergic airway disease and to unravel whether these signals are strain-dependent. Our previous studies, conducted in the BALB/c mouse background, demonstrated that transgenic mice expressing a dominant-negative version of IkappaBalpha in the airway epithelium (CC10-IkappaBalpha(SR)) were protected from Ova-induced inflammation. In contrast to these earlier observations, we demonstrate here that CC10-IkappaBalpha(SR) transgenic mice on the C57BL/6 background were not protected from Ova-induced allergic airway inflammation. Consistent with this finding, Ova-induced nuclear localization of the RelA subunit of NF-kappaB was not observed in C57BL/6 mice, in contrast to the marked nuclear presence of RelA in BALB/c mice. Evaluation of cytokine profiles in bronchoalveolar lavage demonstrated elevated expression of TNF-alpha in BALB/c mice compared with C57BL/6 mice after an acute challenge with Ova. Finally, neutralization of TNF-alpha by a blocking antibody prevented nuclear localization of RelA in BALB/c mice after Ova challenge. These data suggest that the mechanism of response of the airway epithelium of immunized C57BL/6 mice to antigen challenge is fundamentally different from that of immunized BALB/c mice and highlight the potential importance of TNF-alpha in regulating epithelial NF-kappaB activation in allergic airway disease.
Assuntos
Epitélio/metabolismo , Epitélio/patologia , NF-kappa B/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Animais , Antígenos/imunologia , Ativação Enzimática , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Metaplasia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muco/metabolismo , Inibidor de NF-kappaB alfa , Testes de Neutralização , Ovalbumina/imunologia , Pneumonia/imunologia , Hipersensibilidade Respiratória/imunologia , Especificidade da Espécie , Traqueia/patologia , Transgenes/genética , Fator de Necrose Tumoral alfa/metabolismo , Uteroglobina/metabolismoRESUMO
Protein S-glutathionylation (PSSG) is a posttranslational modification that involves the conjugation of the small antioxidant molecule glutathione to cysteine residues and is emerging as a critical mechanism of redox-based signaling. PSSG levels increase under conditions of oxidative stress and are controlled by glutaredoxins (Grx) that, under physiological conditions, preferentially deglutathionylate cysteines and restore sulfhydryls. Both the occurrence and distribution of PSSG in tissues is unknown because of the labile nature of this oxidative event and the lack of specific reagents. The goal of this study was to establish and validate a protocol that enables detection of PSSG in situ, using the property of Grx to deglutathionylate cysteines. Using Grx1-catalyzed cysteine derivatization, we evaluated PSSG content in mice subjected to various models of lung injury and fibrosis. In control mice, PSSG was detectable primarily in the airway epithelium and alveolar macrophages. Exposure of mice to NO(2) resulted in enhanced PSSG levels in parenchymal regions, while exposure to O(2) resulted in minor detectable changes. Finally, bleomycin exposure resulted in marked increases in PSSG reactivity both in the bronchial epithelium as well as in parenchymal regions. Taken together, these findings demonstrate that Grx1-based cysteine derivatization is a powerful technique to specifically detect patterns of PSSG expression in lungs, and will enable investigations into regional changes in PSSG content in a variety of diseases.
Assuntos
Glutarredoxinas/metabolismo , Glutationa/análise , Histocitoquímica/métodos , Pulmão/metabolismo , Proteína S/análise , Animais , Biocatálise , Cisteína/metabolismo , Glutationa/metabolismo , Pulmão/química , Pulmão/efeitos dos fármacos , Pneumopatias/induzido quimicamente , Pneumopatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia de Fluorescência/métodos , Dióxido de Nitrogênio/farmacologia , Oxidantes Fotoquímicos/farmacologia , Oxirredução , Oxigênio/farmacologia , Inclusão em Parafina , Proteína S/química , Proteína S/metabolismoRESUMO
Pulmonary inflammation in asthma is orchestrated by the activity of NF-kappaB. NO and NO synthase (NOS) activity are important modulators of inflammation. The availability of the NOS substrate, l-arginine, is one of the mechanisms that controls the activity of NOS. Arginase also uses l-arginine as its substrate, and arginase-1 expression is highly induced in a murine model of asthma. Because we have previously described that arginase affects NOx content and interferes with the activation of NF-kappaB in lung epithelial cells, the goal of this study was to investigate the impact of arginase inhibition on the bioavailability of NO and the implications for NF-kappaB activation and inflammation in a mouse model of allergic airway disease. Administration of the arginase inhibitor BEC (S-(2-boronoethyl)-l-cysteine) decreased arginase activity and caused alterations in NO homeostasis, which were reflected by increases in S-nitrosylated and nitrated proteins in the lungs from inflamed mice. In contrast to our expectations, BEC enhanced perivascular and peribronchiolar lung inflammation, mucus metaplasia, NF-kappaB DNA binding, and mRNA expression of the NF-kappaB-driven chemokine genes CCL20 and KC, and lead to further increases in airways hyperresponsiveness. These results suggest that inhibition of arginase activity enhanced a variety of parameters relevant to allergic airways disease, possibly by altering NO homeostasis.
Assuntos
Arginase/antagonistas & inibidores , Mediadores da Inflamação/fisiologia , Nitratos/metabolismo , Proteínas/metabolismo , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Tirosina/metabolismo , Regulação para Cima/imunologia , Animais , Arginase/metabolismo , Arginase/fisiologia , Ácidos Borônicos/administração & dosagem , Brônquios/enzimologia , Brônquios/imunologia , Brônquios/patologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/imunologia , Feminino , Mediadores da Inflamação/administração & dosagem , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Metaplasia , Camundongos , Camundongos Endogâmicos BALB C , Muco/imunologia , Muco/metabolismo , Óxido Nítrico/metabolismo , Nitrosação/efeitos dos fármacos , Hipersensibilidade Respiratória/enzimologia , Hipersensibilidade Respiratória/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
Polysaccharides have been shown to have immunomodulatory properties. Modulation of the immune system plays a crucial role in physiological processes as well as in the treatment and/or prevention of autoimmune and infectious diseases. Cellulose nanocrystals (CNCs) are derived from cellulose, the most abundant polysaccharide on the earth. CNCs are an emerging class of crystalline nanomaterials with exceptional physico-chemical properties for high-end applications and commercialization prospects. The aim of this study was to design, synthesize, and evaluate the cytotoxicity of a series of biocompatible, wood-based, cationic CNCs as potential immunomodulators. The anionic CNCs were rendered cationic by grafting with cationic polymers having pendant +NMe3 and +NH3 moieties. The success of the synthesis of the cationic CNCs was evidenced by Fourier transform infrared spectroscopy, dynamic light scattering, zeta potential, and elemental analysis. No modification in the nanocrystals rod-like shape was observed in transmission electron microscopy and atomic force microscopy analyses. Cytotoxicity studies using three different cell-based assays (MTT, Neutral Red, and LIVE/DEAD®) and three relevant mouse and human immune cells indicated very low cytotoxicity of the cationic CNCs in all tested experimental conditions. Overall, our results showed that cationic CNCs are suitable to be further investigated as immunomodulators and potential vaccine nanoadjuvants.
RESUMO
The interest in functionalized cellulose nanocrystals (CNCs) for multiple biomedical application has been increasing in recent years. CNCs are suitable to functionalization with an array of polymers, generating chemically related nanomaterials with different morphologies, surface charges that can affect bioreactivity, including immune response. In this study, we sought to understand the mechanistic differences regarding immunological responses evoked by functionalized CNCs and whether surface charges play a role in this effect. We investigated the effect of a cationic, CNCs-poly(APMA), and an anionic, CNCs-poly(NIPAAm) derivatives on the secretion of inflammatory cytokines, mitochondria-derived ROS and mitochondrial function and antioxidant response as well as on endoplasmic reticulum (ER) stress, in human and murine inflammatory cells. The cationic CNCs-poly(APMA) evoked a more robust immunological response in murine cell line, while the anionic CNCs-poly(NIPAAm) showed a significant NLRP3 inflammasome-dependent and independent immunological response in human monocytes. Moreover, CNCs-poly(NIPAAm) induced greater formation of acidic vesicular organelles, mitochondrial ROS in non-stimulated cells while CNCs-poly(APMA) mainly affected mitochondrial function by decreasing the intracellular ATP. The differences on the biological responses may be related to the surface charges of CNCs, and their likely interactions with intra and extracellular biomolecules.
Assuntos
Nanopartículas/toxicidade , Polímeros/toxicidade , Animais , Bioensaio , Linhagem Celular , Humanos , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/química , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismoRESUMO
S-glutathionylation is rapidly emerging as an important post-translational modification, responsible for transducing oxidant signals. However, few approaches are available that allow visualization of glutathione mixed disulfides in intact cells. We describe here a glutaredoxin1-dependent cysteine derivatization and labeling approach, in order to visualize S-glutathionylation patterns in situ. Using this new method, marked S-glutathionylation was observed in epithelial cells, which was predominant at membrane ruffles. As expected, the labeling intensity was further enhanced in response to bolus oxidant treatments, or in cells overexpressing Nox1 plus its coactivators. In addition, manipulation of endogenous levels of glutaredoxin-1 via RNAi, or overexpression resulted in altered sensitivity to H2O2 induced formation of glutathione mixed disulfides. Overall, the derivatization approach described here preferentially detects S-glutathionylation and provides an important means to visualize this post-translational modification in sub-cellular compartments and to investigate its relation to normal physiology as well as pathology.
Assuntos
Cisteína/análogos & derivados , Glutationa/metabolismo , Oxirredutases/metabolismo , Animais , Linhagem Celular , Glutarredoxinas , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Processamento de Proteína Pós-Traducional , Soroalbumina Bovina/metabolismoRESUMO
Recently we have demonstrated that needle-like cationic cellulose nanocrystals (CNC-AEMA2) evoke immunological responses through NLRP3 inflammasome/IL-1ß inflammatory pathway. In this study we demonstrated that curcumin, a naturally occurring polyphenolic compound isolated from Curcuma longa (Zingiberaceae), was able to suppress, at least in part, this immunological response, as observed by diminished IL-1ß secretion in CNC-AEMA2-stimulated macrophages primed with LPS. Curcumin is a well-known antioxidant and anti-inflammatory natural compound and in addition to acting as "scavenger" of reactive oxygen species (ROS), it can also upregulates antioxidant enzymes. However, the mechanisms by which this natural compound exerts its protective activity is still under investigation. We hypothesize that curcumin may also affect S-glutathionylation of key proteins involved in the NLRP3 inflammasome/IL-1ß pathway, and therefore impact their protein-protein interactions. The goal of this study was to investigate the effects of curcumin on the S-glutathionylation of NLRP3 induced by CNC-AEMA2 in LPS-primed mouse macrophages (J774A.1), as well as interactions among proteins of the NLRP3 inflammasome complex. Our main finding indicates that the addition of curcumin concomitantly with LPS caused the greatest decrease in NLRP3 S-glutathionylation and a respective increase in caspase-1 S-glutathionylation, which appears to favor protein-protein interactions in the NLRP3 complex. Taking together, our results suggest that, at least in part, the anti-inflammatory activity of curcumin is associated with changes in S-glutathionylation of key NLRP3 inflammasome components, and perhaps resulting in sustained complex assembly and suppression of IL-1ß secretion.
Assuntos
Celulose/metabolismo , Curcumina/química , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/química , Animais , Cátions/química , Linhagem Celular , Celulose/química , Curcumina/isolamento & purificação , Curcumina/farmacologia , Ensaio de Imunoadsorção Enzimática , Interleucina-1beta/análise , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/química , Zingiberaceae/química , Zingiberaceae/metabolismoRESUMO
Cellulose nanocrystals (CNCs) have emerged as promising candidates for a number of bio-applications. Surface modification of CNCs continues to gain significant research interest as it imparts new properties to the surface of the nanocrystals for the design of multifunctional CNCs-based materials. A small chemical surface modification can potentially lead to drastic behavioral changes of cell-material interactions thereby affecting the intended bio-application. In this work, unmodified CNCs were covalently decorated with four different organic moieties such as a diaminobutane fragment, a cyclic oligosaccharide (ß-cyclodextrin), a thermoresponsive polymer (poly[N-isopropylacrylamide]), and a cationic aminomethacrylamide-based polymer using different synthetic covalent methods. The effect of surface coatings of CNCs and the respective dose-response of the above organic moieties on the cell viability were evaluated on mammalian cell cultures (J774A.1 and MFC-7), using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-nyltetrazolium bromide and lactate dehydrogenase assays. Overall, the results indicated that cells exposed to surface-coated CNCs for 24 h did not display major changes in cell viability, membrane permeability as well as cell morphology. However, with longer exposure, all these parameters were somewhat affected, which appears not to be correlated with either anionic or cationic surface coatings of CNCs used in this study.
RESUMO
INTRODUCTION: Cellulose nanocrystals (CNCs) are bio-based nanomaterials typically derived from the acid hydrolysis of the most abundant natural polymer, cellulose. These nanomaterials have garnered significant interest due to their unique properties, such as uniform rod-like shape, high surface area, high strength, liquid crystalline behavior, tailored surface chemistry, biocompatibility, biodegradability, sustainability and non-toxic carbohydrate-based nature. AREAS COVERED: The recent developments in the use of unmodified and modified CNCs as versatile nanoplatforms for emerging biomedical applications such as drug delivery systems, enzyme/protein immobilization scaffolds, bioimaging, biosensing and tissue engineering are highlighted. A brief discussion of the biological and toxicity properties of CNCs is also presented. EXPERT OPINION: While a number of recent studies have indicated that CNCs are promising nanomaterials for biomedical applications, there is a substantial amount of work that still remains to be done before realizing the full therapeutic potential of CNCs. Major effort should be focused on detailed in vitro and in vivo studies of modified CNCs constructs in order to better understand the integration of CNCs in the biological systems.
Assuntos
Celulose/química , Nanopartículas , Polímeros/química , Sistemas de Liberação de Medicamentos , Nanoestruturas , Engenharia TecidualRESUMO
A number of diseases of the respiratory tract, as exemplified in this review by asthma, are associated with increased amounts of nitric oxide (NO) in the expired breath. Asthma is furthermore characterized by increased production of reactive oxygen species that scavenge NO to form more reactive nitrogen species as demonstrated by the enhanced presence of nitrated proteins in the lungs of these patients. This increased oxidative metabolism leaves less bioavailable NO and coincides with lower amounts of S-nitrosothiols. In this review, we speculate on mechanisms responsible for the increased amounts of NO in inflammatory airway disease and discuss the apparent paradox of higher levels of NO as opposed to decreased amounts of S-nitrosothiols. We will furthermore give an overview of the regulation of NO production and biochemical events by which NO transduces signals into cellular responses, with a particular focus on modulation of inflammation by NO. Lastly, difficulties in studying NO signaling and possible therapeutic uses for NO will be highlighted.
Assuntos
Asma/metabolismo , Asma/patologia , Óxido Nítrico/metabolismo , Oxirredução , Apoptose , Arginina/química , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Modelos Biológicos , NF-kappa B/metabolismo , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo , Transdução de Sinais , Tirosina/químicaRESUMO
A number of studies suggest that moderate consumption of red wine may be more effective than other alcoholic beverages in decreasing the risk of coronary heart disease (CAD). In this study, we investigated the effect of a crude extract (CE), as well as an ethyl acetate fraction (EAF) obtained from a Brazilian red wine in the mesenteric arterial bed (MAB) from rats. Our results showed that after the tonus of MAB was increased with phenylephrine (PE), increasing concentrations of CE induced a concentration-dependent relaxation; moreover, EAF was more potent in relaxing the MAB when compared with CE. In vessels depolarized with KCl (80 mM) or treated with the Na(+)/K(+)-ATPase pump inhibitor, ouabain (OUA; 100 microM), or with the K(+) channel blockers: barium (BaCl(2), 100 microM) and tetraethylammonium (TEA; 500 microM), the effect of EAF was significantly reduced. However, this effect was not altered by the ATP-dependent K(+) (K(ATP)) channel blocker, glibenclamide (GLI; 100 microM) as well as Charybdotoxin (ChTx 10 nM), a nonselective inhibitor of K(Ca) channels of large and intermediate conductance plus Apamin (Apamin 100 nM), a specific inhibitor of K(Ca) channels of small conductance. The residual vasodilator effect of EAF observed in vessels pretreated with L-NOARG (100 microM), 1H-[1,2,4,] oxadiazolo[4,3-alfa]quinoxalin, ODQ (10 microM) or KCl (80 mM), given separately, was reduced by the administration of KCl (40 mM) plus L-NOARG (100 microM). The present study demonstrates that the vasodilator effect of EAF is partially dependent upon membrane hyperpolarization in combination with nitric oxide (NO) release.
Assuntos
Acetatos/química , GMP Cíclico/fisiologia , Artérias Mesentéricas/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico/química , Vinho/análise , Acetilcolina/farmacologia , Animais , Fatores Biológicos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Brasil , Eletrofisiologia , Masculino , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III , Nitroarginina/farmacologia , Extratos Vegetais/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Solventes , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologiaRESUMO
Crystalline cellulose nanocrystals (CNCs) have emerged as novel materials for a wide variety of important applications such as nanofillers, nanocomposites, surface coatings, regenerative medicine and potential drug delivery. CNCs have a needle-like structure with sizes in the range of 100-200 nm long and 5-20 nm wide and a mean aspect ratio 10-100. Despite the great potential applicability of CNCs, very little is known about their potential immunogenicity. Needle-like materials have been known to evoke an immune response in particular to activate the (NOD-like receptor, pyrin domain-containing 3)-inflammasome/IL-1ß (Interleukin 1ß) pathway. In this study we evaluated the capacity of unmodified CNC and its cationic derivatives CNC-AEM (aminoethylmethacrylate)1, CNC-AEM2, CNC-AEMA(aminoethylmethacrylamide)1 and CNC-AEMA2 to stimulate NLRP3-inflammasome/IL-1ß pathway and enhance the production of mitochondrial reactive oxygen species (ROS). Mouse macrophage cell line (J774A.1) was stimulated for 24 h with 50 µg/mL with unmodified CNC and its cationic derivatives. Alternatively, J774A1 or PBMCs (peripheral blood mononuclear cells) were stimulated with CNC-AEMA2 in presence or absence of LPS (lipopolysaccharide). IL-1ß secretion was analyzed by ELISA, mitochondrial function by JC-1 staining and ATP content. Intracellular and mitochondrial reactive oxygen species (ROS) were assessed by DCF-DA (2',7'-dichlorodihydrofluorescein diacetate) and MitoSOX, respectively. Mitochondrial ROS and extracellular ATP were significantly increased in cells treated with CNC-AEMA2, which correlates with the strongest effects on IL-1ß secretion in non-primed cells. CNC-AEMA2 also induced IL-1ßsecretion in LPS-primed and non-primed PBMCs. Our data suggest that the increases in mitochondrial ROS and ATP release induced by CNC-AEMA2 may be associated with its capability to evoke immune response. We demonstrate the first evidence that newly synthesized cationic cellulose nanocrystal derivative, CNC-AEMA2, has immunogenic properties, which may lead to the development of a potential non-toxic and safe nanomaterial to be used as a novel adjuvant for vaccines.
RESUMO
Apomorphine (APO) is considered to be a classical mixed type dopamine D(1) and D(2) receptor agonist. It has been used in the therapy of Parkinson's disease and, more recently, for the treatment of erectile dysfunction. Like other catechols (e.g. dopamine), APO easily autoxidizes, producing quinone and semiquinone derivatives that may lead to the formation of reactive oxygen species and induce neurotoxicity. We assayed mutagenicity, antimutagenicity, and cytotoxicity of these compounds by means of the Salmonella/microsome assay, WP2 Mutoxitest and sensitivity assay in Saccharomyces cerevisiae yeast strains lacking antioxidant defenses. In the absence of S9 mix both compounds Apomorphine and its oxidation derivative, 8-oxo-apomorphine-semiquinone (8-OASQ), both at doses ranging from 20 to 80 microg per plate, induced frameshift mutations in TA98 and TA97 S. typhimurium strains, with 8-OASQ being up to two times more mutagenic. However, for strains which detect oxidative mutagens, 8-OASQ acted as a mutagen while APO was an antimutagen, inhibiting H(2)O(2) and t-BOOH-induced mutagenicity in TA102 S. typhimurium and WP2-derived E. coli strains. The S9 mix inhibited all mutagenic effects, probably either by conjugation of APO and 8-OASQ to proteins or by quenching reactive oxygen species. In sensitivity assays with S. cerevisiae, APO was only clearly cytotoxic to some strains at higher doses (200 and 400 microg/ml), whereas 8-OASQ dose-dependently sensitized all the strains, mainly the mutants lacking catalase (deltactt1), superoxide dismutase (deltasod1) and Yap1 transcription factor (deltayap1), suggesting that 8-OASQ cytotoxicity towards S. cerevisiae results from its pro-oxidant properties. APO also tended to protect S. cerevisiae strains against oxidative damage induced by high concentrations of H(2)O(2) and t-BOOH, while 8-OASQ enhanced pro-oxidant effects and induced adaptation responses to these agents. These results suggest that the 8-OASQ oxidation product of APO might induce cytotoxic and genotoxic effects.