Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761406

RESUMO

BACKGROUND AND AIMS: Acute-on-chronic liver failure (ACLF) is a complication of cirrhosis characterized by multiple organ failure and high short-term mortality. The pathophysiology of ACLF involves elevated systemic inflammation leading to organ failure, along with immune dysfunction that heightens susceptibility to bacterial infections. However, it is unclear how these aspects are associated with recovery and nonrecovery in ACLF. APPROACH AND RESULTS: Here, we mapped the single-cell transcriptome of circulating immune cells from patients with ACLF and acute decompensated (AD) cirrhosis and healthy individuals. We further interrogate how these findings, as well as immunometabolic and functional profiles, associate with ACLF-recovery (ACLF-R) or nonrecovery (ACLF-NR). Our analysis unveiled 2 distinct states of classical monocytes (cMons). Hereto, ACLF-R cMons were characterized by transcripts associated with immune and stress tolerance, including anti-inflammatory genes such as RETN and LGALS1 . Additional metabolomic and functional validation experiments implicated an elevated oxidative phosphorylation metabolic program as well as an impaired ACLF-R cMon functionality. Interestingly, we observed a common stress-induced tolerant state, oxidative phosphorylation program, and blunted activation among lymphoid populations in patients with ACLF-R. Conversely, ACLF-NR cMon featured elevated expression of inflammatory and stress response genes such as VIM , LGALS2 , and TREM1 , along with blunted metabolic activity and increased functionality. CONCLUSIONS: This study identifies distinct immunometabolic cellular states that contribute to disease outcomes in patients with ACLF. Our findings provide valuable insights into the pathogenesis of ACLF, shedding light on factors driving either recovery or nonrecovery phenotypes, which may be harnessed as potential therapeutic targets in the future.

2.
J Transl Med ; 22(1): 599, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937846

RESUMO

BACKGROUND: Patient heterogeneity poses significant challenges for managing individuals and designing clinical trials, especially in complex diseases. Existing classifications rely on outcome-predicting scores, potentially overlooking crucial elements contributing to heterogeneity without necessarily impacting prognosis. METHODS: To address patient heterogeneity, we developed ClustALL, a computational pipeline that simultaneously faces diverse clinical data challenges like mixed types, missing values, and collinearity. ClustALL enables the unsupervised identification of patient stratifications while filtering for stratifications that are robust against minor variations in the population (population-based) and against limited adjustments in the algorithm's parameters (parameter-based). RESULTS: Applied to a European cohort of patients with acutely decompensated cirrhosis (n = 766), ClustALL identified five robust stratifications, using only data at hospital admission. All stratifications included markers of impaired liver function and number of organ dysfunction or failure, and most included precipitating events. When focusing on one of these stratifications, patients were categorized into three clusters characterized by typical clinical features; notably, the 3-cluster stratification showed a prognostic value. Re-assessment of patient stratification during follow-up delineated patients' outcomes, with further improvement of the prognostic value of the stratification. We validated these findings in an independent prospective multicentre cohort of patients from Latin America (n = 580). CONCLUSIONS: By applying ClustALL to patients with acutely decompensated cirrhosis, we identified three patient clusters. Following these clusters over time offers insights that could guide future clinical trial design. ClustALL is a novel and robust stratification method capable of addressing the multiple challenges of patient stratification in most complex diseases.


Assuntos
Cirrose Hepática , Humanos , Masculino , Feminino , Análise por Conglomerados , Pessoa de Meia-Idade , Prognóstico , Doença Aguda , Algoritmos , Idoso , Estudos de Coortes
3.
Hepatology ; 77(4): 1303-1318, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788956

RESUMO

BACKGROUND AND AIM: Injury to hepatocyte mitochondria is common in metabolic dysfunction-associated fatty liver disease. Here, we investigated whether changes in the content of essential fatty acid-derived lipid autacoids affect hepatocyte mitochondrial bioenergetics and metabolic efficiency. APPROACH AND RESULTS: The study was performed in transgenic mice for the fat-1 gene, which allows the endogenous replacement of the membrane omega-6-polyunsaturated fatty acid (PUFA) composition by omega-3-PUFA. Transmission electron microscopy revealed that hepatocyte mitochondria of fat-1 mice had more abundant intact cristae and higher mitochondrial aspect ratio. Fat-1 mice had increased expression of oxidative phosphorylation complexes I and II and translocases of both inner (translocase of inner mitochondrial membrane 44) and outer (translocase of the outer membrane 20) mitochondrial membranes. Fat-1 mice also showed increased mitofusin-2 and reduced dynamin-like protein 1 phosphorylation, which mediate mitochondrial fusion and fission, respectively. Mitochondria of fat-1 mice exhibited enhanced oxygen consumption rate, fatty acid ß-oxidation, and energy substrate utilization as determined by high-resolution respirometry, [1- 14 C]-oleate oxidation and nicotinamide adenine dinucleotide hydride/dihydroflavine-adenine dinucleotide production, respectively. Untargeted lipidomics identified a rich hepatic omega-3-PUFA composition and a specific docosahexaenoic acid (DHA)-enriched lipid fingerprint in fat-1 mice. Targeted lipidomics uncovered a higher content of DHA-derived lipid autacoids, namely resolvin D1 and maresin 1, which rescued hepatocytes from TNFα-induced mitochondrial dysfunction, and unblocked the tricarboxylic acid cycle flux and metabolic utilization of long-chain acyl-carnitines, amino acids, and carbohydrates. Importantly, fat-1 mice were protected against mitochondrial injury induced by obesogenic and fibrogenic insults. CONCLUSION: Our data uncover the importance of a lipid membrane composition rich in DHA and its lipid autacoid derivatives to have optimal hepatic mitochondrial and metabolic efficiency.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Conservação de Recursos Energéticos , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Ácidos Graxos Ômega-6/química , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/farmacologia , Camundongos Transgênicos , Ácidos Graxos/metabolismo
4.
FASEB J ; 37(3): e22817, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809676

RESUMO

Cytokine-induced inflammation and mitochondrial oxidative stress are key drivers of liver tissue injury. Here, we describe experiments modeling hepatic inflammatory conditions in which plasma leakage leads to large amounts of albumin to reach the interstitium and parenchymal surfaces to explore whether this protein plays a role in preserving hepatocyte mitochondria against the damaging actions of the cytotoxic cytokine tumor necrosis factor alpha (TNFα). Hepatocytes and precision-cut liver slices were cultured in the absence or presence of albumin in the cell media and then exposed to mitochondrial injury with the cytokine TNFα. The homeostatic role of albumin was also investigated in a mouse model of TNFα-mediated liver injury induced by lipopolysaccharide and D-galactosamine (LPS/D-gal). Mitochondrial ultrastructure, oxygen consumption, ATP and reactive oxygen species (ROS) generation, fatty acid ß-oxidation (FAO), and metabolic fluxes were assessed by transmission electron microscopy (TEM), high-resolution respirometry, luminescence-fluorimetric-colorimetric assays and NADH/FADH2 production from various substrates, respectively. TEM analysis revealed that in the absence of albumin, hepatocytes were more susceptible to the damaging actions of TNFα and showed more round-shaped mitochondria with less intact cristae than hepatocytes cultured with albumin. In the presence of albumin in the cell media, hepatocytes also showed reduced mitochondrial ROS generation and FAO. The mitochondria protective actions of albumin against TNFα damage were associated with the restoration of a breakpoint between isocitrate and α-ketoglutarate in the tricarboxylic acid cycle and the upregulation of the antioxidant activating transcription factor 3 (ATF3). The involvement of ATF3 and its downstream targets was confirmed in vivo in mice with LPS/D-gal-induced liver injury, which showed increased hepatic glutathione levels, indicating a reduction in oxidative stress after albumin administration. These findings reveal that the albumin molecule is required for the effective protection of liver cells from mitochondrial oxidative stress induced by TNFα. These findings emphasize the importance of maintaining the albumin levels in the interstitial fluid within the normal range to protect the tissues against inflammatory injury in patients with recurrent hypoalbuminemia.


Assuntos
Albuminas , Hepatopatias , Fator de Necrose Tumoral alfa , Animais , Camundongos , Albuminas/metabolismo , Apoptose , Citocinas/metabolismo , Hepatócitos/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Hepatopatias/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
Gut ; 72(8): 1581-1591, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36788015

RESUMO

BACKGROUND AND AIMS: Current prognostic scores of patients with acutely decompensated cirrhosis (AD), particularly those with acute-on-chronic liver failure (ACLF), underestimate the risk of mortality. This is probably because systemic inflammation (SI), the major driver of AD/ACLF, is not reflected in the scores. SI induces metabolic changes, which impair delivery of the necessary energy for the immune reaction. This investigation aimed to identify metabolites associated with short-term (28-day) death and to design metabolomic prognostic models. METHODS: Two prospective multicentre large cohorts from Europe for investigating ACLF and development of ACLF, CANONIC (discovery, n=831) and PREDICT (validation, n=851), were explored by untargeted serum metabolomics to identify and validate metabolites which could allow improved prognostic modelling. RESULTS: Three prognostic metabolites strongly associated with death were selected to build the models. 4-Hydroxy-3-methoxyphenylglycol sulfate is a norepinephrine derivative, which may be derived from the brainstem response to SI. Additionally, galacturonic acid and hexanoylcarnitine are associated with mitochondrial dysfunction. Model 1 included only these three prognostic metabolites and age. Model 2 was built around 4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, bilirubin, international normalised ratio (INR) and age. In the discovery cohort, both models were more accurate in predicting death within 7, 14 and 28 days after admission compared with MELDNa score (C-index: 0.9267, 0.9002 and 0.8424, and 0.9369, 0.9206 and 0.8529, with model 1 and model 2, respectively). Similar results were found in the validation cohort (C-index: 0.940, 0.834 and 0.791, and 0.947, 0.857 and 0.810, with model 1 and model 2, respectively). Also, in ACLF, model 1 and model 2 outperformed MELDNa 7, 14 and 28 days after admission for prediction of mortality. CONCLUSIONS: Models including metabolites (CLIF-C MET) reflecting SI, mitochondrial dysfunction and sympathetic system activation are better predictors of short-term mortality than scores based only on organ dysfunction (eg, MELDNa), especially in patients with ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Metoxi-Hidroxifenilglicol , Humanos , Prognóstico , Estudos Prospectivos , Cirrose Hepática/complicações , Inflamação/complicações , Metabolômica , Mitocôndrias
6.
Liver Int ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37365995

RESUMO

The identification of systemic inflammation (SI) as a central player in the orchestration of acute-on-chronic liver failure (ACLF) has opened new avenues for the understanding of the pathophysiological mechanisms underlying this disease condition. ACLF, which develops in patients with acute decompensation of cirrhosis, is characterized by single or multiple organ failure and high risk of short-term (28-day) mortality. Its poor outcome is closely associated with the severity of the systemic inflammatory response. In this review, we describe the key features of SI in patients with acutely decompensated cirrhosis and ACLF, including the presence of a high blood white cell count and increased levels of inflammatory mediators in systemic circulation. We also discuss the main triggers (i.e. pathogen- and damage-associated molecular patterns), the cell effectors (i.e. neutrophils, monocytes and lymphocytes), the humoral mediators (acute phase proteins, cytokines, chemokines, growth factors and bioactive lipid mediators) and the factors that influence the systemic inflammatory response that drive organ failure and mortality in ACLF. The role of immunological exhaustion and/or immunoparalysis in the context of exacerbated inflammatory responses that predispose ACLF patients to secondary infections and re-escalation of end-organ dysfunction and mortality are also reviewed. Finally, several new potential immunogenic therapeutic targets are debated.

7.
Proc Natl Acad Sci U S A ; 117(45): 28263-28274, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106416

RESUMO

Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3',5'-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the liver of mice with experimental nonalcoholic steatohepatitis (NASH). Here, we investigated the mechanisms underlying the antiinflammatory effect of the sGC stimulator praliciguat (PRL) in the liver. Therapeutic administration of PRL exerted antiinflammatory and antifibrotic actions in mice with choline-deficient l-amino acid-defined high-fat diet-induced NASH. The PRL antiinflammatory effect was associated with lower F4/80- and CX3CR1-positive macrophage infiltration into the liver in parallel with lower Ly6CHigh- and higher Ly6CLow-expressing monocytes in peripheral circulation. The PRL antiinflammatory effect was also associated with suppression of hepatic levels of interleukin (IL)-1ß, NLPR3 (NACHT, LRR, and PYD domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain), and active cleaved-caspase-1, which are components of the NLRP3 inflammasome. In Kupffer cells challenged with the classical inflammasome model of lipopolysaccharide plus adenosine triphosphate, PRL inhibited the priming (expression of Il1b and Nlrp3) and blocked the release of mature IL-1ß. Mechanistically, PRL induced the protein kinase G (PKG)-mediated phosphorylation of the VASP (vasodilator-stimulated phosphoprotein) Ser239 residue which, in turn, reduced nuclear factor-κB (NF-κB) activity and Il1b and Nlrp3 gene transcription. PRL also reduced active cleaved-caspase-1 levels independent of pannexin-1 activity. These data indicate that sGC stimulation with PRL exerts antiinflammatory actions in the liver through mechanisms related to a PKG/VASP/NF-κB/NLRP3 inflammasome circuit.


Assuntos
Moléculas de Adesão Celular/metabolismo , Inflamassomos/metabolismo , Fígado/metabolismo , Proteínas dos Microfilamentos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfoproteínas/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antígenos Ly/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Células de Kupffer/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Guanilil Ciclase Solúvel/farmacologia
8.
J Hepatol ; 76(1): 93-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450236

RESUMO

BACKGROUND & AIMS: Patients with acute-on-chronic liver failure (ACLF) present a systemic hyperinflammatory response associated with increased circulating levels of small-molecule metabolites. To investigate whether these alterations reflect inadequate cell energy output, we assessed mitochondrial morphology and central metabolic pathways with emphasis on the tricarboxylic acid (TCA) cycle in peripheral leukocytes from patients with acutely decompensated (AD) cirrhosis, with and without ACLF. METHODS: The study included samples from patients with AD cirrhosis (108 without and 128 with ACLF) and 41 healthy individuals. Leukocyte mitochondrial ultrastructure was visualized by transmission electron microscopy and cytosolic and mitochondrial metabolic fluxes were determined by assessing NADH/FADH2 production from various substrates. Plasma GDF15 and FGF21 were determined by Luminex and acylcarnitines by LC-MS/MS. Gene expression was analyzed by RNA-sequencing and PCR-based glucose metabolism profiler array. RESULTS: Mitochondrial ultrastructure in patients with advanced cirrhosis was distinguished by cristae rarefication and swelling. The number of mitochondria per leukocyte was higher in patients, accompanied by a reduction in their size. Increased FGF21 and C6:0- and C8:0-carnitine predicted mortality whereas GDF15 strongly correlated with a gene set signature related to leukocyte activation. Metabolic flux analyses revealed increased energy production in mononuclear leukocytes from patients with preferential involvement of extra-mitochondrial pathways, supported by upregulated expression of genes encoding enzymes of the glycolytic and pentose phosphate pathways. In patients with ACLF, mitochondrial function analysis uncovered break-points in the TCA cycle at the isocitrate dehydrogenase and succinate dehydrogenase level, which were bridged by anaplerotic reactions involving glutaminolysis and nucleoside metabolism. CONCLUSIONS: Our findings provide evidence at the cellular, organelle and biochemical levels that severe mitochondrial dysfunction governs immunometabolism in leukocytes from patients with AD cirrhosis and ACLF. LAY SUMMARY: Patients at advanced stages of liver disease have dismal prognosis due to vital organ failures and the lack of treatment options. In this study, we report that the functioning of mitochondria, which are known as the cell powerhouse, is severely impaired in leukocytes of these patients, probably as a consequence of intense inflammation. Mitochondrial dysfunction is therefore a hallmark of advanced liver disease.


Assuntos
Insuficiência Hepática Crônica Agudizada/imunologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Fatores Imunológicos/farmacologia , Doenças Mitocondriais/complicações , Humanos , Fatores Imunológicos/efeitos adversos , Leucócitos/microbiologia , Leucócitos Mononucleares/metabolismo , Doenças Mitocondriais/fisiopatologia , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/estatística & dados numéricos
9.
Int J Obes (Lond) ; 46(11): 1960-1969, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35896710

RESUMO

BACKGROUND AND AIM: Extracellular matrix (ECM) components released during excessive fat mass expansion are considered potential endogenous danger/alarm signals contributing to innate immune system activation. The aim of the current study was to specifically measure plasma levels of low molecular weight (LMW) hyaluronan (HA) and to evaluate its role as pro-inflammatory damage-associated molecular pattern (DAMP) on leukocyte response in the context of human obesity. SUBJECTS AND METHODS: Participants were selected according to their body mass index (BMI, kg/m2) as non-obese (BMI < 29.9, n = 18) and obese (BMI > 29.9, n = 33). Plasma samples were size-dependent fractionated using ion-exchange chromatography to specifically obtain LMW HA fractions that were subsequently quantified by ELISA. Cell incubation experiments with synthetic HA molecules were performed on freshly Ficoll-isolated neutrophils (PMN) and peripheral blood monocytes (PBMC). Leukocyte and adipose tissue gene expression was assessed by real-time PCR and NF-κB activation by western blot. Plasma cytokine levels were measured by fluorescent bead-based (Luminex) immunoassay. RESULTS: We observed a statistically significant increase in the circulating levels of HA fragments of LMW in individuals with obesity which were consistent with significant up-regulated expression of the LMW HA synthesizing enzyme hyaluronan synthase-1 (HAS-1) in obese adipose tissue. Gene expression assessment of HA receptors revealed up-regulated levels for TLR2 in both obese PMN and PBMC. Synthetic HA molecules of different sizes were tested on leukocytes from healthy donors. LMW HA fragments (15-40 kDa) and not those from intermediate molecular sizes (75-350 kDa) induced a significant up-regulation of the expression of major pro-inflammatory cytokines such as IL-1ß, MCP-1 and IL-8 in PBMC. Importantly, LMW HA was able to induce the phosphorylation of IKK α/ß complex supporting its pro-inflammatory role through NF-κB activation. CONCLUSION: Circulating LMW HA molecules are elevated in obesity and may play an important role in triggering low-grade inflammation and the development of metabolic complications.


Assuntos
Ácido Hialurônico , Receptor 2 Toll-Like , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Receptor 2 Toll-Like/metabolismo , NF-kappa B , Interleucina-8 , Leucócitos Mononucleares , Hialuronan Sintases , Quinase I-kappa B , Ficoll , Inflamação/metabolismo , Citocinas/metabolismo , Imunidade Inata , Obesidade
10.
FASEB J ; 35(2): e21365, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496031

RESUMO

Besides its oncotic power, albumin exerts pleiotropic actions, including binding, transport, and detoxification of endogenous and exogenous molecules, antioxidant activity, and modulation of immune and inflammatory responses. In particular, recent studies have demonstrated that albumin reduces leukocyte cytokine production. Here, we investigated whether albumin also has the ability to protect tissues from the damaging actions of these inflammatory mediators. We circumscribed our investigation to tumor necrosis factor (TNF) α, which exemplifies the connection between immunity and tissue injury. In vivo experiments in analbuminemic mice showed that these mice exhibit a more pronounced response to a model of TNFα-mediated liver injury induced by the administration of lipopolysaccharide (LPS) and D-galactosamine (D-gal). A tissue protective action against LPS/D-gal liver injury was also observed during the administration of human albumin to humanized mice expressing the human genes for albumin and neonatal Fc receptor (hAlb+/+ /hFcRn+/+ ) with preestablished carbon tetrachloride (CCl4 )-induced early cirrhosis. The cytoprotective actions of albumin against TNFα-induced injury were confirmed ex vivo, in precision-cut liver slices, and in vitro, in primary hepatocytes in culture. Albumin protective actions were independent of its scavenging properties and were reproduced by recombinant human albumin expressed in Oryza sativa. Albumin cytoprotection against TNFα injury was related to inhibition of lysosomal cathepsin B leakage accompanied by reductions in mitochondrial cytochrome c release and caspase-3 activity. These data provide evidence that in addition to reducing cytokines, the albumin molecule also has the ability to protect tissues against inflammatory injury.


Assuntos
Albuminas/metabolismo , Anti-Inflamatórios/farmacologia , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Albuminas/farmacologia , Albuminas/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Tetracloreto de Carbono/toxicidade , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Lipopolissacarídeos/toxicidade , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Immunol ; 205(10): 2840-2849, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33008950

RESUMO

Polyunsaturated fatty acids (PUFAs) and their metabolites are potent regulators of inflammation. Generally, omega (n)-3 PUFAs are considered proresolving whereas n-6 PUFAs are classified as proinflammatory. In this study, we characterized the inflammatory response in murine peritonitis and unexpectedly found the accumulation of adrenic acid (AdA), a poorly studied n-6 PUFA. Functional studies revealed that AdA potently inhibited the formation of the chemoattractant leukotriene B4 (LTB4), specifically in human neutrophils, and this correlated with a reduction of its precursor arachidonic acid (AA) in free form. AdA exposure in human monocyte-derived macrophages enhanced efferocytosis of apoptotic human neutrophils. In vivo, AdA treatment significantly alleviated arthritis in an LTB4-dependent murine arthritis model. Our findings are, to our knowledge, the first to indicate that the n-6 fatty acid AdA effectively blocks production of LTB4 by neutrophils and could play a role in resolution of inflammation in vivo.


Assuntos
Anti-Inflamatórios/metabolismo , Artrite Experimental/imunologia , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/metabolismo , Peritonite/imunologia , Animais , Anti-Inflamatórios/análise , Ácido Araquidônico/metabolismo , Artrite Experimental/patologia , Células Cultivadas , Ácidos Graxos Ômega-6/análise , Ácidos Graxos Insaturados/análise , Humanos , Leucotrieno B4/metabolismo , Lipidômica , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Lavagem Peritoneal , Peritonite/patologia , Cultura Primária de Células , Células THP-1 , Zimosan/administração & dosagem , Zimosan/imunologia
12.
Gut ; 70(2): 379-387, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241903

RESUMO

OBJECTIVE: Systemic inflammation predisposes acutely decompensated (AD) cirrhosis to the development of acute-on-chronic liver failure (ACLF). Supportive treatment can improve AD patients, becoming recompensated. Little is known about the outcome of patients recompensated after AD. We hypothesise that different inflammasome activation is involved in ACLF development in compensated and recompensated patients. DESIGN: 249 patients with cirrhosis, divided into compensated and recompensated (previous AD), were followed prospectively for fatal ACLF development. Two external cohorts (n=327) (recompensation, AD and ACLF) were included. Inflammasome-driving interleukins (ILs), IL-1α (caspase-4/11-dependent) and IL-1ß (caspase-1-dependent), were measured. In rats, bile duct ligation-induced cirrhosis and lipopolysaccharide exposition were used to induce AD and subsequent recompensation. IL-1α and IL-1ß levels and upstream/downstream gene expression were measured. RESULTS: Patients developing ACLF showed higher baseline levels of ILs. Recompensated patients and patients with detectable ILs had higher rates of ACLF development than compensated patients. Baseline CLIF-C (European Foundation for the study of chronic liver failure consortium) AD, albumin and IL-1α were independent predictors of ACLF development in compensated and CLIF-C AD and IL-1ß in recompensated patients. Compensated rats showed higher IL-1α gene expression and recompensated rats higher IL-1ß levels with higher hepatic gene expression. Higher IL-1ß detection rates in recompensated patients developing ACLF and higher IL-1α and IL-1ß detection rates in patients with ACLF were confirmed in the two external cohorts. CONCLUSION: Previous AD is an important risk factor for fatal ACLF development and possibly linked with inflammasome activation. Animal models confirmed the results showing a link between ACLF development and IL-1α in compensated cirrhosis and IL-1ß in recompensated cirrhosis.


Assuntos
Insuficiência Hepática Crônica Agudizada/etiologia , Inflamassomos/efeitos adversos , Cirrose Hepática Experimental/complicações , Cirrose Hepática/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Interleucina-1alfa/sangue , Interleucina-1alfa/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley
13.
J Hepatol ; 75 Suppl 1: S49-S66, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34039492

RESUMO

Patients with acutely decompensated cirrhosis have a dismal prognosis and frequently progress to acute-on-chronic liver failure, which is characterised by hepatic and extrahepatic organ failure(s). The pathomechanisms involved in decompensation and disease progression are still not well understood, and as specific disease-modifying treatments do not exist, research to identify novel therapeutic targets is of the utmost importance. This review amalgamates the latest knowledge on disease mechanisms that lead to tissue injury and extrahepatic organ failure - such as systemic inflammation, mitochondrial dysfunction, oxidative stress and metabolic changes - and marries these with the classical paradigms of acute decompensation to form a single paradigm. With this detailed breakdown of pathomechanisms, we identify areas for future research. Novel disease-modifying strategies that break the vicious cycle are urgently required to improve patient outcomes.


Assuntos
Insuficiência Hepática Crônica Agudizada , Cirrose Hepática , Insuficiência Hepática Crônica Agudizada/diagnóstico , Insuficiência Hepática Crônica Agudizada/etiologia , Humanos , Inflamação , Circulação Hepática , Cirrose Hepática/complicações , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Estresse Oxidativo , Prognóstico
14.
J Hepatol ; 74(3): 670-685, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33301825

RESUMO

Acute decompensation (AD) of cirrhosis is defined by the development of ascites, hepatic encephalopathy and/or variceal bleeding. Ascites is traditionally attributed to splanchnic arterial vasodilation and left ventricular dysfunction, hepatic encephalopathy to hyperammonaemia, and variceal haemorrhage to portal hypertension. Recent large-scale European observational studies have shown that systemic inflammation is a hallmark of AD. Here we present a working hypothesis, the systemic inflammation hypothesis, suggesting that systemic inflammation through an impairment of the functions of one or more of the major organ systems may be a common theme and act synergistically with the traditional mechanisms involved in the development of AD. Systemic inflammation may impair organ system function through mechanisms which are not mutually exclusive. The first mechanism is a nitric oxide-mediated accentuation of the preexisting splanchnic vasodilation, resulting in the overactivation of the endogenous vasoconstrictor systems which elicit intense vasoconstriction and hypoperfusion in certain vascular beds, in particular the renal circulation. Second, systemic inflammation may cause immune-mediated tissue damage, a process called immunopathology. Finally, systemic inflammation may induce important metabolic changes. Indeed, systemic inflammatory responses are energetically expensive processes, requiring reallocation of nutrients (glucose, amino acids and lipids) to fuel immune activation. Systemic inflammation also inhibits nutrient consumption in peripheral (non-immune) organs, an effect that may provide one mechanism of reallocation and prioritisation of metabolic fuels for inflammatory responses. However, the decrease in nutrient consumption in peripheral organs may result in decreased mitochondrial production of ATP (energy) and subsequently impaired organ function.


Assuntos
Insuficiência Hepática Crônica Agudizada/etiologia , Ascite/etiologia , Hemorragia Gastrointestinal/etiologia , Encefalopatia Hepática/etiologia , Cirrose Hepática/complicações , Insuficiência de Múltiplos Órgãos/etiologia , Varizes Esofágicas e Gástricas/etiologia , Humanos , Hipertensão Portal/etiologia , Inflamação/complicações , Inflamação/metabolismo , Cirrose Hepática/metabolismo
15.
J Hepatol ; 74(5): 1117-1131, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33276029

RESUMO

BACKGROUND & AIMS: Systemic inflammation and organ failure(s) are the hallmarks of acute-on-chronic liver failure (ACLF), yet their pathogenesis remains uncertain. Herein, we aimed to assess the role of amino acids in these processes in patients with ACLF. METHODS: The blood metabolomic database of the CANONIC study (comprising 137 metabolites, with 43% related to amino acids) - obtained in 181 patients with ACLF and 650 with acute decompensation without ACLF (AD) - was reanalyzed with a focus on amino acids, in particular 9 modules of co-regulated metabolites. We also compared blood metabolite levels between ACLF and AD. RESULTS: The main findings in ACLF were: i) Metabolite modules were increased in parallel with increased levels of markers of systemic inflammation and oxidative stress. ii) Seventy percent of proteinogenic amino acids were present and most were increased. iii) A metabolic network, comprising the amino acids aspartate, glutamate, the serine-glycine one-carbon metabolism (folate cycle), and methionine cycle, was activated, suggesting increased purine and pyrimidine nucleotide synthesis. iv) Cystathionine, L-cystine, glutamate and pyroglutamate, which are involved in the transsulfuration pathway (a methionine cycle branch) were increased, consistent with increased synthesis of the antioxidant glutathione. v) Intermediates of the catabolism of 5 out of the 6 ketogenic amino acids were increased. vi) The levels of spermidine (a polyamine inducer of autophagy with anti-inflammatory effects) were decreased. CONCLUSIONS: In ACLF, blood amino acids fueled protein and nucleotide synthesis required for the intense systemic inflammatory response. Ketogenic amino acids were extensively catabolized to produce energy substrates in peripheral organs, an effect that was insufficient because organs failed. Finally, the decrease in spermidine levels may cause a defect in autophagy contributing to the proinflammatory phenotype in ACLF. LAY SUMMARY: Systemic inflammation and organ failures are hallmarks of acute-on-chronic liver failure (ACLF). Herein, we aimed to characterize the role of amino acids in these processes. The blood metabolome of patients with acutely decompensated cirrhosis, and particularly those with ACLF, reveals evidence of intense skeletal muscle catabolism. Importantly, amino acids (along with glucose), are used for intense anabolic, energy-consuming metabolism in patients with ACLF, presumably to support de novo nucleotide and protein synthesis in the activated innate immune system.


Assuntos
Insuficiência Hepática Crônica Agudizada , Aminoácidos , Inflamação/metabolismo , Metaboloma/imunologia , Insuficiência de Múltiplos Órgãos , Insuficiência Hepática Crônica Agudizada/imunologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Insuficiência Hepática Crônica Agudizada/fisiopatologia , Aminoácidos/classificação , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Feminino , Humanos , Cirrose Hepática/complicações , Masculino , Redes e Vias Metabólicas/fisiologia , Metabolismo/fisiologia , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Prognóstico , Biossíntese de Proteínas/fisiologia , Índice de Gravidade de Doença
16.
J Hepatol ; 75(5): 1116-1127, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245803

RESUMO

BACKGROUND & AIMS: Acute decompensation (AD) of cirrhosis is a heterogeneous clinical entity associated with moderate mortality. In some patients, this condition develops quickly into the more deadly acute-on-chronic liver failure (ACLF), in which other organs such as the kidneys or brain fail. The aim of this study was to characterize the blood lipidome in a large series of patients with cirrhosis and identify specific signatures associated with AD and ACLF development. METHODS: Serum untargeted lipidomics was performed in 561 patients with AD (518 without and 43 with ACLF) (discovery cohort) and in 265 patients with AD (128 without and 137 with ACLF) in whom serum samples were available to perform repeated measurements during the 28-day follow-up (validation cohort). Analyses were also performed in 78 patients with AD included in a therapeutic albumin trial (43 patients with compensated cirrhosis and 29 healthy individuals). RESULTS: The circulating lipid landscape associated with cirrhosis was characterized by a generalized suppression, which was more manifest during AD and in non-surviving patients. By computing discriminating accuracy and the variable importance projection score for each of the 223 annotated lipids, we identified a sphingomyelin fingerprint specific for AD of cirrhosis and a distinct cholesteryl ester and lysophosphatidylcholine fingerprint for ACLF. Liver dysfunction and infections were the principal net contributors to these fingerprints, which were dynamic and interchangeable between patients with AD whose condition worsened to ACLF and those who improved. Notably, blood lysophosphatidylcholine levels increased in these patients after albumin therapy. CONCLUSIONS: Our findings provide insights into the lipid landscape associated with decompensation of cirrhosis and ACLF progression and identify unique non-invasive diagnostic biomarkers of advanced cirrhosis. LAY SUMMARY: Analysis of lipids in blood from patients with advanced cirrhosis reveals a general suppression of their levels in the circulation of these patients. A specific group of lipids known as sphingomyelins are useful to distinguish between patients with compensated and decompensated cirrhosis. Another group of lipids designated cholesteryl esters further distinguishes patients with decompensated cirrhosis who are at risk of developing organ failures.


Assuntos
Fibrose/sangue , Lipidômica/normas , Idoso , Deterioração Clínica , Estudos de Coortes , Feminino , Fibrose/epidemiologia , Humanos , Lipidômica/métodos , Lipidômica/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Prognóstico , Índice de Gravidade de Doença
17.
FASEB J ; 34(8): 10640-10656, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579292

RESUMO

Eicosapentaenoic acid (EPA) has garnered attention after the success of the REDUCE-IT trial, which contradicted previous conclusions on EPA for cardiovascular disease risk. Here we first investigated EPA's preventative role on hyperglycemia and hyperinsulinemia. EPA ethyl esters prevented obesity-induced glucose intolerance, hyperinsulinemia, and hyperglycemia in C57BL/6J mice. Supporting NHANES analyses showed that fasting glucose levels of obese adults were inversely related to EPA intake. We next investigated how EPA improved murine hyperinsulinemia and hyperglycemia. EPA overturned the obesity-driven decrement in the concentration of 18-hydroxyeicosapentaenoic acid (18-HEPE) in white adipose tissue and liver. Treatment of obese inbred mice with RvE1, the downstream immunoresolvant metabolite of 18-HEPE, but not 18-HEPE itself, reversed hyperinsulinemia and hyperglycemia through the G-protein coupled receptor ERV1/ChemR23. To translate the findings, we determined if the effects of RvE1 were dependent on host genetics. RvE1's effects on hyperinsulinemia and hyperglycemia were divergent in diversity outbred mice that model human genetic variation. Secondary SNP analyses further confirmed extensive genetic variation in human RvE1/EPA-metabolizing genes. Collectively, the data suggest EPA prevents hyperinsulinemia and hyperglycemia, in part, through RvE1's activation of ERV1/ChemR23 in a host genetic manner. The studies underscore the need for personalized administration of RvE1 based on genetic/metabolic enzyme profiles.


Assuntos
Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Hiperglicemia/genética , Hiperglicemia/prevenção & controle , Hiperinsulinismo/genética , Hiperinsulinismo/prevenção & controle , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Intolerância à Glucose/genética , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Quimiocinas/genética , Receptores Acoplados a Proteínas G/genética
18.
Gut ; 69(6): 1127-1138, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32102926

RESUMO

The pathophysiological background of decompensated cirrhosis is characterised by a systemic proinflammatory and pro-oxidant milieu that plays a major role in the development of multiorgan dysfunction. Such abnormality is mainly due to the systemic spread of bacteria and/or bacterial products from the gut and danger-associated molecular patterns from the diseased liver triggering the release of proinflammatory mediators by activating immune cells. The exacerbation of these processes underlies the development of acute-on-chronic liver failure. A further mechanism promoting multiorgan dysfunction and failure likely consists with a mitochondrial oxidative phosphorylation dysfunction responsible for systemic cellular energy crisis. The systemic proinflammatory and pro-oxidant state of patients with decompensated cirrhosis is also responsible for structural and functional changes in the albumin molecule, which spoil its pleiotropic non-oncotic properties such as antioxidant, scavenging, immune-modulating and endothelium protective functions. The knowledge of these abnormalities provides novel targets for mechanistic treatments. In this respect, the oncotic and non-oncotic properties of albumin make it a potential multitarget agent. This would expand the well-established indications to the use of albumin in decompensated cirrhosis, which mainly aim at improving effective volaemia or preventing its deterioration. Evidence has been recently provided that long-term albumin administration to patients with cirrhosis and ascites improves survival, prevents complications, eases the management of ascites and reduces hospitalisations. However, variant results indicate that further investigations are needed, aiming at confirming the beneficial effects of albumin, clarifying its optimal dosage and administration schedule and identify patients who would benefit most from long-term albumin administration.


Assuntos
Cirrose Hepática/metabolismo , Albumina Sérica/metabolismo , Insuficiência Hepática Crônica Agudizada/metabolismo , Animais , Humanos , Cirrose Hepática/fisiopatologia
19.
J Hepatol ; 73(4): 817-828, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32294533

RESUMO

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is a newly described syndrome, which develops in patients with acute decompensation of cirrhosis, and is characterized by intense systemic inflammation, multiple organ failures and high short-term mortality. The profile of circulating lipid mediators, which are endogenous signaling molecules that play a major role in inflammation and immunity, is poorly characterized in ACLF. METHODS: In the current study, we assessed the profile of lipid mediators by liquid chromatography coupled to tandem mass spectrometry in plasma from patients with acute decompensation of cirrhosis, with (n = 119) and without (n = 127) ACLF, and from healthy controls (n = 18). Measurements were prospectively repeated in 191 patients with acute decompensation of cirrhosis during a 28-day follow-up period. RESULTS: Fifty-nine lipid mediators (out of 100) were detected in plasma from cirrhotic patients, of which 16 were significantly associated with disease status. Among these, 11 lipid mediators distinguished patients at any stage from healthy controls, whereas 2 lipid mediators (LTE4 and 12-HHT, both derived from arachidonic acid) shaped a minimal plasma fingerprint that discriminated patients with ACLF from those without. Levels of LTE4 distinguished ACLF grade 3 from ACLF grades 1 and 2, followed the clinical course of the disease (increased with worsening and decreased with improvement) and positively correlated with markers of inflammation and non-apoptotic cell death. Moreover, LTE4 together with LXA5 (derived from eicosapentaenoic acid) and EKODE (derived from linoleic acid) were associated with short-term mortality. LXA5 and EKODE formed a signature associated with coagulation and liver failures. CONCLUSION: Taken together, these findings uncover specific lipid mediator profiles associated with disease severity and prognosis in patients with acute decompensation of cirrhosis. LAY SUMMARY: Acute-on-chronic liver failure (ACLF) is characterized by intense systemic inflammation, multiple organ failures and high short-term mortality. In the current study, we assessed the plasma lipid profile of 100 bioactive lipid mediators in healthy controls, patients with decompensated cirrhosis, and those who had developed ACLF. We identified lipid mediator signatures associated with inflammation and non-apoptotic cell death that discriminate disease severity and evolution, short-term mortality and organ failures.


Assuntos
Insuficiência Hepática Crônica Agudizada/sangue , Metabolismo dos Lipídeos , Lipidômica/métodos , Lipídeos/sangue , Idoso , Biomarcadores/sangue , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Índice de Gravidade de Doença , Fatores de Tempo
20.
J Hepatol ; 73(1): 113-120, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32061870

RESUMO

BACKGROUND & AIMS: High-density lipoprotein cholesterol (HDL-C) levels are reduced in patients with chronic liver disease and inversely correlate with disease severity. During acute conditions such as sepsis, HDL-C levels decrease rapidly and HDL particles undergo profound changes in their composition and function. We aimed to determine whether indices of HDL quantity and quality associate with progression and survival in patients with advanced liver disease. METHODS: HDL-related biomarkers were studied in 508 patients with compensated or decompensated cirrhosis (including acute-on-chronic liver failure [ACLF]) and 40 age- and gender-matched controls. Specifically, we studied levels of HDL-C, its subclasses HDL2-C and HDL3-C, and apolipoprotein A1 (apoA-I), as well as HDL cholesterol efflux capacity as a metric of HDL functionality. RESULTS: Baseline levels of HDL-C and apoA-I were significantly lower in patients with stable cirrhosis compared to controls and were further decreased in patients with acute decompensation (AD) and ACLF. In stable cirrhosis (n = 228), both HDL-C and apoA-I predicted the development of liver-related complications independently of model for end-stage liver disease (MELD) score. In patients with AD, with or without ACLF (n = 280), both HDL-C and apoA-I were MELD-independent predictors of 90-day mortality. On ROC analysis, both HDL-C and apoA-I had high diagnostic accuracy for 90-day mortality in patients with AD (AUROCs of 0.79 and 0.80, respectively, similar to that of MELD 0.81). On Kaplan-Meier analysis, HDL-C <17 mg/dl and apoA-I <50 mg/dl indicated poor short-term survival. The prognostic accuracy of HDL-C was validated in a large external validation cohort of 985 patients with portal hypertension due to advanced chronic liver disease (AUROCs HDL-C: 0.81 vs. MELD: 0.77). CONCLUSION: HDL-related biomarkers are robust predictors of disease progression and survival in chronic liver failure. LAY SUMMARY: People who suffer from cirrhosis (scarring of the liver) have low levels of cholesterol carried by high-density lipoproteins (HDL-C). These alterations are connected to inflammation, which is a problem in severe liver disease. Herein, we show that reduced levels of HDL-C and apolipoprotein A-I (apoA-I, the main protein carried by HDL) are closely linked to the severity of liver failure, its complications and survival. Both HDL-C and apoA-I can be easily measured in clinical laboratories and are as good as currently used prognostic scores calculated from several laboratory values by complex formulas.


Assuntos
Insuficiência Hepática Crônica Agudizada , Apolipoproteína A-I , HDL-Colesterol , Lipoproteínas HDL2 , Lipoproteínas HDL3 , Cirrose Hepática , Insuficiência Hepática Crônica Agudizada/sangue , Insuficiência Hepática Crônica Agudizada/diagnóstico , Insuficiência Hepática Crônica Agudizada/epidemiologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Apolipoproteína A-I/sangue , Apolipoproteína A-I/metabolismo , Biomarcadores , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Estudos Transversais , Progressão da Doença , Europa (Continente)/epidemiologia , Feminino , Humanos , Lipoproteínas HDL2/sangue , Lipoproteínas HDL2/metabolismo , Lipoproteínas HDL3/sangue , Lipoproteínas HDL3/metabolismo , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Cirrose Hepática/epidemiologia , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Valor Preditivo dos Testes , Prognóstico , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA