Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(18): 7916-7923, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683040

RESUMO

In response to the COVID-19 pandemic, air cleaning technologies were promoted as useful tools for disinfecting public spaces and combating airborne pathogen transmission. However, no standard method exists to assess the potentially harmful byproduct formation from air cleaners. Through a consensus standard development process, a draft standard test method to assess portable air cleaner performance was developed, and a suite of air cleaners employing seven different technologies was tested. The test method quantifies not only the removal efficiency of a challenge chemical suite and ultrafine particulate matter but also byproduct formation. Clean air delivery rates (CADRs) are used to quantify the chemical and particle removal efficiencies, and an emission rate framework is used to quantify the formation of formaldehyde, ozone, and other volatile organic compounds. We find that the tested photocatalytic oxidation and germicidal ultraviolet light (GUV) technologies produced the highest levels of aldehyde byproducts having emission rates of 202 and 243 µg h-1, respectively. Additionally, GUV using two different wavelengths, 222 and 254 nm, both produced ultrafine particulate matter.


Assuntos
COVID-19 , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Material Particulado/análise , Ozônio/análise , Formaldeído/análise , SARS-CoV-2 , Desinfecção , Poluentes Atmosféricos/análise , Raios Ultravioleta , Humanos
2.
Environ Sci Technol ; 58(25): 11084-11095, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860676

RESUMO

Ethylene oxide ("EtO") is an industrially made volatile organic compound and a known human carcinogen. There are few reliable reports of ambient EtO concentrations around production and end-use facilities, however, despite major exposure concerns. We present in situ, fast (1 Hz), sensitive EtO measurements made during February 2023 across the southeastern Louisiana industrial corridor. We aggregated mobile data at 500 m spatial resolution and reported average mixing ratios for 75 km of the corridor. Mean and median aggregated values were 31.4 and 23.3 ppt, respectively, and a majority (75%) of 500 m grid cells were above 10.9 ppt, the lifetime exposure concentration corresponding to 100-in-one million excess cancer risk (1 × 10-4). A small subset (3.3%) were above 109 ppt (1000-in-one million cancer risk, 1 × 10-3); these tended to be near EtO-emitting facilities, though we observed plumes over 10 km from the nearest facilities. Many plumes were highly correlated with other measured gases, indicating potential emission sources, and a subset was measured simultaneously with a second commercial analyzer, showing good agreement. We estimated EtO for 13 census tracts, all of which were higher than EPA estimates (median difference of 21.3 ppt). Our findings provide important information about EtO concentrations and potential exposure risks in a key industrial region and advance the application of EtO analytical methods for ambient sampling and mobile monitoring for air toxics.


Assuntos
Monitoramento Ambiental , Óxido de Etileno , Louisiana , Monitoramento Ambiental/métodos , Humanos , Poluentes Atmosféricos/análise
3.
Indoor Air ; 31(5): 1323-1339, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33337567

RESUMO

Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder. Using a Vocus Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-TOF), an Aerodyne Gas Chromatograph (GC), an Iodide-Chemical Ionization Time-of-Flight Mass Spectrometer (I-CIMS), and Picarro cavity ringdown spectrometers, we alternated measurements between the weight room and supply air, allowing for determination of VOC, NH3 , H2 O, and CO2 emission rates per person (emission factors). Human-derived emission factors were higher than previous studies of measuring indoor air quality in rooms with individuals at rest and correlated with increased CO2 emission factors. Emission factors from personal care products (PCPs) were consistent with previous studies and typically decreased throughout the day. In addition, N-chloraldimines were observed in the gas phase after the exercise equipment was cleaned with a dichlor solution. The chloraldimines likely originated from reactions of free amino acids with HOCl on gym surfaces.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Detergentes , Exercício Físico , Compostos Orgânicos Voláteis , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Cloro , Monitoramento Ambiental , Humanos , Espectrometria de Massas , Esportes , Universidades
4.
J Phys Chem A ; 122(14): 3640-3652, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29528647

RESUMO

Substantial amounts of gas- and particle-phase organic nitrates have been reported in field studies of atmospheric chemistry conducted around the world, and it has been proposed that a significant fraction of these may be formed from the nighttime reaction of monoterpenes with NO3 radicals. In the study presented here, ß-pinene (a major global monoterpene emission) was reacted with NO3 radicals in an environmental chamber and the molecular and functional group composition of the resulting secondary organic aerosol (SOA) was determined using a variety of methods. Eight products, which comprised ∼95% of the SOA mass, were identified and quantified. More than 90% (by mass) of these consisted of acetal heterodimers and heterotrimers that were apparently formed through acid-catalyzed reactions in phase-separated particles. The molar yield of the major oligomer was 16.7%, and the yields of the other six and the single monomer ranged from 1.1% to 2.9%, for a total yield of 30.7%. From these analyses it was determined that the yields of the two major monomer building blocks were 25.9% and 23.6%, and that those of the other four ranged from 2.0% to 4.8%, for a total monomer yield of 62.4%. The measured SOA mass yield was 88.9% and the O/C, N/C, and H/C ratios, molecular weight, and density of the SOA calculated from the results of functional group analysis of the bulk SOA were 0.40, 0.11, 1.79, 217 g mol-1, and 1.21 g cm-3, respectively, similar to values estimated from results of molecular analysis. The results demonstrate the combined importance of RO2• + RO2• reactions, alkoxy radical decomposition and isomerization, and acid-catalyzed particle-phase reactions in the NO3 radical-initiated oxidation of ß-pinene and subsequent formation of SOA and should be useful for understanding reactions of other monoterpenes and for developing models for the laboratory and atmosphere.

5.
J Phys Chem A ; 121(27): 5164-5174, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28621942

RESUMO

The albedo and microphysical properties of clouds are controlled in part by the hygroscopicity of particles serving as cloud condensation nuclei (CCN). Hygroscopicity of complex organic mixtures in the atmosphere varies widely and remains challenging to predict. Here we present new measurements characterizing the CCN activity of pure compounds in which carbon chain length and the numbers of hydroperoxy, carboxyl, and carbonyl functional groups were systematically varied to establish the contributions of these groups to organic aerosol apparent hygroscopicity. Apparent hygroscopicity decreased with carbon chain length and increased with polar functional groups in the order carboxyl > hydroperoxy > carbonyl. Activation diameters at different supersaturations deviated from the -3/2 slope in log-log space predicted by Köhler theory, suggesting that water solubility limits CCN activity of particles composed of weakly functionalized organic compounds. Results are compared to a functional group contribution model that predicts CCN activity of organic compounds. The model performed well for most compounds but underpredicted the CCN activity of hydroperoxy groups. New best-fit hydroperoxy group/water interaction parameters were derived from the available CCN data. These results may help improve estimates of the CCN activity of ambient organic aerosols from composition data.

6.
J Phys Chem A ; 119(43): 10684-96, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26436557

RESUMO

The linear C15 alkene, 1-pentadecene, was reacted with NO3 radicals in a Teflon environmental chamber and yields of secondary organic aerosol (SOA) and particulate ß-hydroxynitrates, ß-carbonylnitrates, and organic peroxides (ß-nitrooxyhydroperoxides + dinitrooxyperoxides) were quantified using a variety of methods. Reaction occurs almost solely by addition of NO3 to the C═C double bond and measured yields of ß-hydroxynitrate isomers indicate that 92% of addition occurs at the terminal carbon. Molar yields of reaction products determined from measurements, a proposed reaction mechanism, and mass-balance considerations were 0.065 for ß-hydroxynitrates (0.060 and 0.005 for 1-nitrooxy-2-hydroxypentadecane and 1-hydroxy-2-nitrooxypentadecane isomers), 0.102 for ß-carbonylnitrates, 0.017 for organic peroxides, 0.232 for ß-nitrooxyalkoxy radical isomerization products, and 0.584 for tetradecanal and formaldehyde, the volatile C14 and C1 products of ß-nitrooxyalkoxy radical decomposition. Branching ratios for decomposition and isomerization of ß-nitrooxyalkoxy radicals were 0.716 and 0.284 and should be similar for other linear 1-alkenes ≥ C6 whose alkyl chains are long enough to allow for isomerization to occur. These branching ratios have not been measured previously, and they differ significantly from those estimated using structure-activity relationships, which predict >99% isomerization. It appears that the presence of a -ONO2 group adjacent to an alkoxy radical site greatly enhances the rate of decomposition relative to isomerization, which is otherwise negligible, and that the effect is similar to that of a -OH group. The results provide insight into the effects of molecular structure on mechanisms of oxidation of volatile organic compounds and should be useful for improving structure-activity relationships that are widely used to predict the fate of these compounds in the atmosphere and for modeling SOA formation and aging.

7.
Nat Microbiol ; 8(8): 1480-1494, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37524975

RESUMO

Drought impacts on microbial activity can alter soil carbon fate and lead to the loss of stored carbon to the atmosphere as CO2 and volatile organic compounds (VOCs). Here we examined drought impacts on carbon allocation by soil microbes in the Biosphere 2 artificial tropical rainforest by tracking 13C from position-specific 13C-pyruvate into CO2 and VOCs in parallel with multi-omics. During drought, efflux of 13C-enriched acetate, acetone and C4H6O2 (diacetyl) increased. These changes represent increased production and buildup of intermediate metabolites driven by decreased carbon cycling efficiency. Simultaneously,13C-CO2 efflux decreased, driven by a decrease in microbial activity. However, the microbial carbon allocation to energy gain relative to biosynthesis was unchanged, signifying maintained energy demand for biosynthesis of VOCs and other drought-stress-induced pathways. Overall, while carbon loss to the atmosphere via CO2 decreased during drought, carbon loss via efflux of VOCs increased, indicating microbially induced shifts in soil carbon fate.


Assuntos
Bactérias , Carbono , Secas , Floresta Úmida , Microbiologia do Solo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Solo/química , Clima Tropical , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Multiômica , Regulação Bacteriana da Expressão Gênica
9.
J Geophys Res Atmos ; 123(18): 10620-10636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30997298

RESUMO

During the 2013 Southern Oxidant and Aerosol Study, Fourier Transform Infrared Spectroscopy (FTIR) and Aerosol Mass Spectrometer (AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass concentrations were 15-60% higher at CTR than at LRK but their time series had moderate correlations (r~0.5). However, NOx had no correlation (r=0.08) between the two sites with nighttime-to-early-morning peaks 3~10 times higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at both sites: Fossil Fuel Combustion (FFC) related organic aerosols, Mixed Organic Aerosols (MOA), and Biogenic Organic Aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab-generated particle mass from the photochemical oxidation of both isoprene and monoterpenes under high NOx conditions from chamber experiments. The BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of factors at both sites and a third nighttime NOx-related factor (33% of OM) at CTR but a daytime nitrate-related factor (28% of OM) at LRK. NOx was correlated with BOA and LO-OOA for NOx concentrations higher than 1 ppb at both sites, producing 0.5 ± 0.1 µg m-3 for CTR-LO-OOA and 1.0 ± 0.3 µg m-3 for CTR-BOA above 1 ppb additional biogenic OM for each 1 ppb increase of NOx.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA