Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 39(9): 2065-2082, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35915319

RESUMO

PURPOSE: Nanosuspensions have been used for enhancing the bioavailability of poorly soluble drugs. This study explores the temperature evolution during their preparation in a wet stirred media mill using a coupled experimental-enthalpy balance approach. METHODS: Milling was performed at three levels of stirrer speed, bead loading, and bead sizes. Temperatures were recorded over time, then simulated using an enthalpy balance model by fitting the fraction of power converted to heat ξ. Moreover, initial and final power, ξ, and temperature profiles at 5 different test runs were predicted by power-law (PL) and machine learning (ML) approaches. RESULTS: Heat generation was higher at the higher stirrer speed and bead loading/size, which was explained by the higher power consumption. Despite its simplicity with a single fitting parameter ξ, the enthalpy balance model fitted the temperature evolution well with root mean squared error (RMSE) of 0.40-2.34°C. PL and ML approaches provided decent predictions of the temperature profiles in the test runs, with RMSE of 0.93-4.17 and 1.00-2.17°C, respectively. CONCLUSIONS: We established the impact of milling parameters on heat generation-power and demonstrated the simulation-prediction capability of an enthalpy balance model when coupled to the PL-ML approaches.


Assuntos
Nanopartículas , Composição de Medicamentos , Tamanho da Partícula , Solubilidade , Suspensões , Temperatura
2.
Pharmaceutics ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38543247

RESUMO

We examined the evolution of fenofibrate (FNB, drug) particle size distribution (PSD) during the production of nanosuspensions via wet stirred media milling (WSMM) with a cell-based population balance model (PBM). Our objective was to elucidate the potential impacts of batch size, suspension volumetric flow rate, and imperfect mixing in a recirculating WSMM. Various specific breakage rate functions were fitted to experimental PSD data at baseline conditions assuming perfect mixing. Then, the best function was used to simulate the PSD evolution at various batch sizes and flow rates to validate the model. A novel function, which is a product of power-law and logistic functions, fitted the evolution the best, signifying the existence of a transition particle size commensurate with a grinding limit. Although larger batches yielded coarser and wider PSDs, the suspensions had identical PSDs when milled for the same effective milling time. The flow rate had an insignificant influence on the PSD. Furthermore, the imperfect mixing in the mill chamber was simulated by considering more than one cell and different back-mixing flow ratios. The effects were weak and restricted to the first few turnovers. These insights contribute to our understanding of recirculating WSMM, providing valuable guidance for process development.

3.
Pharmaceutics ; 16(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543288

RESUMO

This study aimed to develop a practical semi-mechanistic modeling framework to predict particle size evolution during wet bead milling of pharmaceutical nanosuspensions over a wide range of process conditions and milling scales. The model incorporates process parameters, formulation parameters, and equipment-specific parameters such as rotor speed, bead type, bead size, bead loading, active pharmaceutical ingredient (API) mass, temperature, API loading, maximum bead volume, blade diameter, distance between blade and wall, and an efficiency parameter. The characteristic particle size quantiles, i.e., x10, x50, and x90, were transformed to obtain a linear relationship with time, while the general functional form of the apparent breakage rate constant of this relationship was derived based on three models with different complexity levels. Model A, the most complex and general model, was derived directly from microhydrodynamics. Model B is a simpler model based on a power-law function of process parameters. Model C is the simplest model, which is the pre-calibrated version of Model B based on data collected from different mills across scales, formulations, and drug products. Being simple and computationally convenient, Model C is expected to reduce the amount of experimentation needed to develop and optimize the wet bead milling process and streamline scale-up and/or scale-out.

4.
Pharmaceutics ; 15(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37765182

RESUMO

The impacts of bead sizes and bead mixtures on breakage kinetics, the number of milling cycles applied to prevent overheating, and power consumption during the nanomilling of drug (griseofulvin) suspensions were investigated from both an experimental and theoretical perspective. Narrowly sized zirconia beads with nominal sizes of 100, 200, and 400 µm and their half-and-half binary mixtures were used at 3000 and 4000 rpm with two bead loadings of 0.35 and 0.50. Particle size evolution was measured during the 3 h milling experiments using laser diffraction. An nth-order breakage model was fitted to the experimental median particle size evolution, and various microhydrodynamic parameters were calculated. In general, the beads and their mixtures with smaller median sizes achieved faster breakage. While the microhydrodynamic model explained the impacts of process parameters, it was limited in describing bead mixtures. For additional test runs performed, the kinetics model augmented with a decision tree model using process parameters outperformed that augmented with an elastic-net regression model using the microhydrodynamic parameters. The evaluation of the process merit scores suggests that the use of bead mixtures did not lead to notable process improvement; 100 µm beads generally outperformed bead mixtures and coarser beads in terms of fast breakage, low power consumption and heat generation, and low intermittent milling cycles.

5.
Pharmaceutics ; 14(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559333

RESUMO

Although temperature can significantly affect the stability and degradation of drug nanosuspensions, temperature evolution during the production of drug nanoparticles via wet stirred media milling, also known as nanomilling, has not been studied extensively. This study aims to establish both descriptive and predictive capabilities of a semi-theoretical lumped parameter model (LPM) for temperature evolution. In the experiments, the mill was operated at various stirrer speeds, bead loadings, and bead sizes, while the temperature evolution at the mill outlet was recorded. The LPM was formulated and fitted to the experimental temperature profiles in the training runs, and its parameters, i.e., the apparent heat generation rate Qgen and the apparent overall heat transfer coefficient times surface area UA, were estimated. For the test runs, these parameters were predicted as a function of the process parameters via a power law (PL) model and machine learning (ML) model. The LPM augmented with the PL and ML models was used to predict the temperature evolution in the test runs. The LPM predictions were also compared with those of an enthalpy balance model (EBM) developed recently. The LPM had a fitting capability with a root-mean-squared error (RMSE) lower than 0.9 °C, and a prediction capability, when augmented with the PL and ML models, with an RMSE lower than 4.1 and 2.1 °C, respectively. Overall, the LPM augmented with the PL model had both good descriptive and predictive capability, whereas the one with the ML model had a comparable predictive capability. Despite being simple, with two parameters and obviating the need for sophisticated numerical techniques for its solution, the semi-theoretical LPM generally predicts the temperature evolution similarly or slightly better than the EBM. Hence, this study has provided a validated, simple model for pharmaceutical engineers to simulate the temperature evolution during the nanomilling process, which will help to set proper process controls for thermally labile drugs.

6.
Int J Pharm ; 574: 118848, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31812798

RESUMO

This work describes the characterization of three NIR interfaces intended to monitor a continuous granulation process. Two interfaces (i.e. a barrel interface and a rotating paddle interface) were evaluated to monitor the API concentration at the entrance of the granulator, and a third interface (i.e. an outlet interface), was evaluated to examine the quality of the resulting outlet granules. The barrel interface provided an assessment of the API concentration during the feeding process by scanning the material conveyed by the screws of the loss-in-weight feeder. The rotating paddle interface analyzed discrete amounts of powder upon exiting the feeder via the accumulation of material on the paddles. Partial Least Squares (PLS) calibration models were developed using the same powder blends for the two inlet interfaces and using the outlet granules for the outlet interface. Five independent batches were used to evaluate the prediction performance of each inlet calibration model. The outlet interface produced the lowest error of prediction due to the homogeneity of the granules. The barrel interface produced lower errors of prediction than the rotating paddle interface. However, powder density affected only the barrel interface, producing deviations in the predicted values. Therefore, powder density is a factor that should be considered in the calibration sample design for spectroscopic measurements when using this type of interface. A variographic analysis demonstrated that the continuous 1-dimensional motion in the barrel and outlet interfaces produced representative measurements of each batch during calibration and test experiments, generating a low minimum practical error (MPE).


Assuntos
Pós/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tecnologia Farmacêutica/métodos , Calibragem , Química Farmacêutica/métodos , Excipientes/química , Análise dos Mínimos Quadrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA