RESUMO
The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30-40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous literature has shown that cytotoxic cancer therapies and ionizing radiation damage tumors, prompting cancer cells to exploit the autotaxin (ATX)-lysophosphatidic acid (LPA)-lysophosphatidic acid receptor (LPAR) signaling axis to enhance survival pathways, thus reducing treatment efficacy. Therefore, targeting this signaling axis has become a crucial strategy to overcome some forms of cancer resistance. Addressing this challenge, we identified and assessed ATX-1d, a novel compound targeting ATX, through computational methods and in vitro assays. ATX-1d exhibited an IC50 of 1.8 ± 0.3 µM for ATX inhibition and demonstrated a significant binding affinity for ATX, as confirmed by MM-GBSA, QM/MM-GBSA, and SAPT in silico methods. ATX-1d significantly amplified the potency of paclitaxel, increasing its effectiveness tenfold in 4T1 murine breast carcinoma cells and fourfold in A375 human melanoma cells without inducing cytotoxic effects as a single agent.
Assuntos
Paclitaxel , Diester Fosfórico Hidrolases , Paclitaxel/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Humanos , Linhagem Celular Tumoral , Animais , Camundongos , Simulação por Computador , Simulação de Acoplamento Molecular , Sinergismo Farmacológico , Sobrevivência Celular/efeitos dos fármacosRESUMO
Gene flow can affect evolutionary inference when species are undersampled. Here, we evaluate the effects of gene flow and geographic sampling on demographic inference of 2 hummingbirds that hybridize, Allen's hummingbird (Selasphorus sasin) and rufous hummingbird (Selasphorus rufus). Using whole-genome data and extensive geographic sampling, we find widespread connectivity, with introgression far beyond the Allen's × rufous hybrid zone, although the Z chromosome resists introgression beyond the hybrid zone. We test alternative hypotheses of speciation history of Allen's, rufous, and Calliope (S. calliope) hummingbird and find that rufous hummingbird is the sister taxon to Allen's hummingbird, and Calliope hummingbird is the outgroup. A model treating the 2 subspecies of Allen's hummingbird as a single panmictic population fit observed genetic data better than models treating the subspecies as distinct populations, in contrast to morphological and behavioral differences and analyses of spatial population structure. With additional sampling, our study builds upon recent studies that came to conflicting conclusions regarding the evolutionary histories of these 2 species. Our results stress the importance of thorough geographic sampling when assessing demographic history in the presence of gene flow.
Assuntos
Evolução Biológica , Aves , Animais , Aves/genéticaRESUMO
How do Great Gray Owls (Strix nebulosa) capture voles (Cricetidae) through a layer of snow? As snow is a visual barrier, the owls locate voles by ear alone. To test how snow absorbs and refracts vole sound, we inserted a loudspeaker under the snowpack and analysed sound from the loudspeaker, first buried, then unburied. Snow attenuation coefficients rose with frequency (0.3 dB cm-1 at 500 Hz, 0.6 dB cm-1 at 3 kHz) such that low-frequency sound transmitted best. The Great Gray Owl has the largest facial disc of any owl, suggesting they are adapted to use this low-frequency sound. We used an acoustic camera to spatially localize sound source location, and show that snow also refracts prey sounds (refractive index: 1.16). To an owl not directly above the prey, this refraction creates an 'acoustic mirage': prey acoustic position is offset from its actual location. Their hunting strategy defeats this mirage because they hover directly over prey, which is the listening position with least refraction and least attenuation. Among all birds, the Great Gray Owl has the most extreme wing morphologies associated with quiet flight. These extreme wing traits may function to reduce the sounds of hovering, with implications for bioinspiration.
Assuntos
Comportamento Predatório , Estrigiformes , Animais , Acústica , Arvicolinae , NeveRESUMO
Vertebrates communicate through a wide variety of sounds, but few mechanisms of sound production, besides vocalization, are well understood. During high-speed dives, male trainbearer hummingbirds (Lesbia spp.) produce a repeated series of loud snaps. Hypotheses for these peculiar sounds include the birds employing their elongated tails and/or striking their wings against each other. Each snap to human ears seems like a single acoustic event, but sound recordings revealed that each snap is actually a couplet of impulsive, atonal sounds produced â¼13â ms apart. Analysis of high-speed videos refutes these previous hypotheses, and furthermore suggests that this sonation is produced by a within-wing mechanism - each instance of a sound coincided with a distinctive pair of deep wingbeats (with greater stroke amplitude, measured for one display sequence). Across many displays, we found a tight alignment between a pair of stereotyped deep wingbeats (in contrast to shallower flaps across the rest of the dive) and patterns of snap production, evidencing a 1:1 match between these sonations and stereotyped kinematics. Other birds including owls and poorwills are reported to produce similar sounds, suggesting that this mechanism of sound production could be somewhat common within birds, yet its physical acoustics remain poorly understood.
Assuntos
Passeriformes , Estrigiformes , Animais , Plumas , Voo Animal , Masculino , Som , Asas de AnimaisRESUMO
Why do hummingbirds hum and insects whine when their wings flap in flight? Gutin proposed that a spinning propeller produces tonal sound because the location of the center of aerodynamic pressure on each blade oscillates relative to an external receiver. Animal wings also move, and in addition, aerodynamic force produced by animal wings fluctuates in magnitude and direction over the course of the wingbeat. Here, we modeled animal wing tone as the equal, opposite reaction to aerodynamic forces on the wing, using Lowson's equation for the sound field produced by a moving point force. Two assumptions of Lowson's equation were met: animal flight is low (<0.3) Mach and animals from albatrosses to mosquitoes are acoustically compact, meaning they have a small spatial extent relative to the wavelength of their wingbeat frequency. This model predicted the acoustic waveform of a hovering Costa's hummingbird (Calypte costae), which varies in the x, y and z directions around the animal. We modeled the wing forces of a hovering animal as a sinusoid with an amplitude equal to body weight. This model predicted wing sound pressure levels below a hovering hummingbird and mosquito to within 2â dB; and that far-field mosquito wing tone attenuates to 20â dB within about 0.2â m of the animal, while hummingbird humming attenuates to 20â dB at about 10â m. Wing tone plays a role in communication of certain insects, such as mosquitoes, and influences predator-prey interactions, because it potentially reveals the predator's presence to its intended prey.
Assuntos
Voo Animal , Asas de Animais , Animais , Fenômenos Biomecânicos , Insetos , SomRESUMO
Wing trills are pulsed sounds produced by modified wing feathers at one or more specific points in time during a wingbeat. Male Allen's hummingbirds (Selasphorus sasin) produce a sexually dimorphic 9â kHz wing trill in flight. Here, we investigated the kinematic basis for trill production. The wingtip velocity hypothesis posits that trill production is modulated by the airspeed of the wingtip at some point during the wingbeat, whereas the wing rotation hypothesis posits that trill production is instead modulated by wing rotation kinematics. To test these hypotheses, we flew six male Allen's hummingbirds in an open-jet wind tunnel at flight speeds of 0, 3, 6, 9, 12 and 14â mâ s-1, and recorded their flight with two 'acoustic cameras' placed below and behind, or below and lateral to the flying bird. The acoustic cameras are phased arrays of 40 microphones that used beamforming to spatially locate sound sources within a camera image. Trill sound pressure level (SPL) exhibited a U-shaped relationship with flight speed in all three camera positions. SPL was greatest perpendicular to the stroke plane. Acoustic camera videos suggest that the trill is produced during supination. The trill was up to 20â dB louder during maneuvers than it was during steady-state flight in the wind tunnel, across all airspeeds tested. These data provide partial support for the wing rotation hypothesis. Altered wing rotation kinematics could allow male Allen's hummingbirds to modulate trill production in social contexts such as courtship displays.
Assuntos
Comunicação Animal , Aves/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Plumas/anatomia & histologia , Masculino , Rotação , SomRESUMO
BACKGROUND: To facilitate faster phenotyping of onions (Allium cepa L.), Fourier-transform mid infrared (FT-MIR) spectroscopy with partial least squares (PLS) regression modelling was evaluated for the determination of pungency (pyruvate), sweetness (free sugars) and fructan in juice samples (n = 605) expressed from bulbs from breeding populations. RESULTS: Fourier-transform infrared (FTIR) spectra (range 1700-900 cm-1 ) were obtained from droplets (30 µL) of unprocessed juice. Goodness-of-fit (r2 ) and prediction errors (standard error of cross validation) for optimal PLS models were: soluble solids (0.997, 0.1 °Brix), pyruvate [0.825, 0.8 µmol g-1 fresh weight (FW)], fructan (0.98, 1.9 mg g-1 FW), glucose (0.941, 1.1 mg g-1 FW), fructose (0.967, 1.0 mg g-1 FW) and sucrose (0.919, 1.7 mg g-1 FW). FTIR models for industry sweetness indices based on glucose or sucrose equivalents were also developed. Because of its very low concentration (0.8-12 µmol g-1 FW) relative to other compounds, pyruvate was the weakest model developed. Fructan could be determined spectroscopically without the need for enzymatic digestion. CONCLUSIONS: All of the chemometric models developed are acceptable for screening purposes. Those for soluble solids, fructan and fructose are also suitable for routine analysis. FT-MIR can therefore be utilised for the simultaneous determination of pungency, sweetness and fructan in this crop. © 2018 Society of Chemical Industry.
Assuntos
Aromatizantes/análise , Frutanos/química , Cebolas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Açúcares/análise , Frutose/análise , Glucose/análise , Humanos , Ácido Pirúvico/análise , Sacarose/análise , PaladarRESUMO
During flight, insect wings bend and twist under the influence of aerodynamic and inertial forces. We tested whether wing resonance of honeybees (Apis mellifera) matches the wingbeat frequency, against the 'stiff element' hypothesis that the wing's first longitudinal mode exceeds the wingbeat frequency. Six bees were immobilized with their right wing pair outspread, and stimulated with a shaker while the normal modes were recorded with a scanning Doppler laser vibrometer. The lowest normal mode of the wings was the first longitudinal bending mode and, at 602±145â Hz, was greater than the wingbeat frequency of 234±13.9â Hz. Higher-order normal modes of the wing tended to incorporate nodal lines in the chordwise direction of the trailing edge, suggesting that their mode shape did not strongly resemble wing deformation during flapping flight. These results support the stiff element hypothesis for Apis mellifera.
Assuntos
Abelhas/fisiologia , Vibração , Asas de Animais/fisiologia , Animais , Fenômenos BiomecânicosRESUMO
Broadbills in the genus Smithornis produce a loud brreeeeet during a distinctive flight display. It has been posited that this klaxon-like sound is generated non-vocally with the outer wing feathers (P9, P10), but no scientific studies have previously addressed this hypothesis. Although most birds that make non-vocal communication sounds have feathers with a shape distinctively modified for sound production, Smithornis broadbills do not. We investigated whether this song is produced vocally or with the wings in rufous-sided broadbill (S. rufolateralis) and African broad bill (S. capensis). In support of the wing song hypothesis, synchronized high-speed video and sound recordings of displays demonstrated that sound pulses were produced during the downstroke, subtle gaps sometimes appeared between the outer primary feathers P6-P10, and wing tip speed reached 16â mâ s(-1) Tests of a spread wing in a wind tunnel demonstrated that at a specific orientation, P6 and P7 flutter and produce sound. Wind tunnel tests on individual feathers P5-P10 from a male of each species revealed that while all of these feathers can produce sound via aeroelastic flutter, P6 and P7 produce the loudest sounds, which are similar in frequency to the wing song, at airspeeds achievable by the wing tip during display flight. Consistent with the wind tunnel experiments, field manipulations of P6, P7 and P8 changed the timbre of the wing song, and reduced its tonality, demonstrating that P6 and P7 are together the sound source, and not P9 or P10. The resultant wing song appears to have functionally replaced vocal song.
Assuntos
Comunicação Animal , Plumas , Voo Animal/fisiologia , Passeriformes/fisiologia , Asas de Animais/fisiologia , Animais , Masculino , Vibração , Gravação em Vídeo/métodos , VentoRESUMO
Cricket was the first sport to publish recommended methods for injury surveillance in 2005. Since then, there have been changes to the nature of both cricket and injury surveillance. Researchers representing the major cricket playing nations met to propose changes to the previous recommendations, with an agreed voting block of 14. It was decided that 10 of 14 votes (70%) were required to add a new definition element and 11 of 14 (80%) were required to amend a previous definition. In addition to the previously agreed 'Match time-loss' injury, definitions of 'General time-loss', 'Medical presentation', 'Player-reported' and 'Imaging-abnormality' injuries are now provided. Further, new injury incidence units of match injuries per 1000 player days, and annual injuries per 100 players per year are recommended. There was a shift towards recommending a greater number of possible definitions, due to differing contexts and foci of cricket research (eg, professional vs amateur; injury surveillance systems vs specific injury category studies). It is recommended that researchers use and report as many of the definitions as possible to assist both comparisons between studies within cricket and with those from other sports.
Assuntos
Traumatismos em Atletas/diagnóstico , Traumatismos em Atletas/epidemiologia , Consenso , Humanos , Incidência , Sociedades , EsportesRESUMO
Tonal, non-vocal sounds are widespread in both ordinary bird flight and communication displays. We hypothesized these sounds are attributable to an aerodynamic mechanism intrinsic to flight feathers: aeroelastic flutter. Individual wing and tail feathers from 35 taxa (from 13 families) that produce tonal flight sounds were tested in a wind tunnel. In the wind tunnel, all of these feathers could flutter and generate tonal sound, suggesting that the capacity to flutter is intrinsic to flight feathers. This result implies that the aerodynamic mechanism of aeroelastic flutter is potentially widespread in flight of birds. However, the sounds these feathers produced in the wind tunnel replicated the actual flight sounds of only 15 of the 35 taxa. Of the 20 negative results, we hypothesize that 10 are false negatives, as the acoustic form of the flight sound suggests flutter is a likely acoustic mechanism. For the 10 other taxa, we propose our negative wind tunnel results are correct, and these species do not make sounds via flutter. These sounds appear to constitute one or more mechanism(s) we call 'wing whirring', the physical acoustics of which remain unknown. Our results document that the production of non-vocal communication sounds by aeroelastic flutter of flight feathers is widespread in birds. Across all birds, most evolutionary origins of wing- and tail-generated communication sounds are attributable to three mechanisms: flutter, percussion and wing whirring. Other mechanisms of sound production, such as turbulence-induced whooshes, have evolved into communication sounds only rarely, despite their intrinsic ubiquity in ordinary flight.
Assuntos
Movimentos do Ar , Comunicação Animal , Aves/fisiologia , Plumas/fisiologia , Som , Animais , Evolução Biológica , Aves/anatomia & histologia , Plumas/anatomia & histologia , Voo Animal , Vibração , Asas de AnimaisRESUMO
Males in the 'bee' hummingbird clade produce distinctive, species-specific sounds with fluttering tail feathers during courtship displays. Flutter may be the result of vortex shedding or aeroelastic interactions. We investigated the underlying mechanics of flutter and sound production of a series of different feathers in a wind tunnel. All feathers tested were capable of fluttering at frequencies varying from 0.3 to 10 kHz. At low airspeeds (Uair) feather flutter was highly damped, but at a threshold airspeed (U*) the feathers abruptly entered a limit-cycle vibration and produced sound. Loudness increased with airspeed in most but not all feathers. Reduced frequency of flutter varied by an order of magnitude, and declined with increasing Uair in all feathers. This, along with the presence of strong harmonics, multiple modes of flutter and several other non-linear effects indicates that flutter is not simply a vortex-induced vibration, and that the accompanying sounds are not vortex whistles. Flutter is instead aeroelastic, in which structural (inertial/elastic) properties of the feather interact variably with aerodynamic forces, producing diverse acoustic results.
Assuntos
Movimentos do Ar , Aves , Elasticidade , Plumas/fisiologia , Som , Vibração , Comunicação Animal , Animais , Plumas/anatomia & histologia , MasculinoRESUMO
Feathers can produce sound by fluttering in airflow. This flutter is hypothesized to be aeroelastic, arising from the coupling of aerodynamic forces to one or more of the feather's intrinsic structural resonance frequencies. We investigated how mode of flutter varied among a sample of hummingbird tail feathers tested in a wind tunnel. Feather vibration was measured directly at ~100 points across the surface of the feather with a scanning laser Doppler vibrometer (SLDV), as a function of airspeed, Uair. Most feathers exhibited multiple discrete modes of flutter, which we classified into types including tip, trailing vane and torsional modes. Vibratory behavior within a given mode was usually stable, but changes in independent variables such as airspeed or orientation sometimes caused feathers to abruptly 'jump' from one mode to another. We measured structural resonance frequencies and mode shapes directly by measuring the free response of 64 feathers stimulated with a shaker and recorded with the SLDV. As predicted by the aeroelastic flutter hypothesis, the mode shape (spatial distribution) of flutter corresponded to a bending or torsional structural resonance frequency of the feather. However, the match between structural resonance mode and flutter mode was better for tip or torsional mode shapes, and poorer for trailing vane modes. Often, the 3rd bending structural harmonic matched the expressed mode of flutter, rather than the fundamental. We conclude that flutter occurs when airflow excites one or more structural resonance frequencies of a feather, most akin to a vibrating violin string.
Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Plumas/anatomia & histologia , Plumas/fisiologia , Vibração , Movimentos do Ar , Animais , Efeito Doppler , Som , Espectrografia do SomRESUMO
AbstractKrogh's principle states, "For such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." The downside of picking a question first and then finding an ideal organism on which to study it is that it will inevitably leave many organisms neglected. Here, we promote the inverse Krogh principle: all organisms are worthy of study. The inverse Krogh principle and the Krogh principle are not opposites. Rather, the inverse Krogh principle emphasizes a different starting point for research: start with a biological unit, such as an organism, clade, or specific organism trait, then seek or create tractable research questions. Even the hardest-to-study species have research questions that can be asked of them: Where does it fall within the tree of life? What resources does it need to survive and reproduce? How does it differ from close relatives? Does it have unique adaptations? The Krogh and inverse Krogh approaches are complementary, and many research programs naturally include both. Other considerations for picking a study species include extreme species, species informative for phylogenetic analyses, and the creation of models when a suitable species does not exist. The inverse Krogh principle also has pitfalls. A scientist that picks the organism first might choose a research question not really suited to the organism, and funding agencies rarely fund organism-centered grant proposals. The inverse Krogh principle does not call for all organisms to receive the same amount of research attention. As knowledge continues to accumulate, some organisms-models-will inevitably have more known about them than others. Rather, it urges a broader search across organismal diversity to find sources of inspiration for research questions and the motivation needed to pursue them.
Assuntos
Adaptação Fisiológica , Animais , Filogenia , FenótipoRESUMO
There are at least eight ways that wings potentially produce sound. Five mechanisms are aerodynamic sounds, created by airflow, and three are structural sound created by interactions of solid surfaces. Animal flight is low Mach (M), meaning all animals move at <30% of the speed of sound. Thus in aerodynamic mechanisms the effects of air compressibility can be ignored, except in mechanism #1. Mechanism #1 is trapped air, in which air approaches or exceeds Mach 1 as it escapes a constriction. This mechanism is hypothetical but likely. #2 is Gutin sound, the aerodynamic reaction to lift and drag. This mechanism is ubiquitous in flight, and generates low frequency sound such as the humming of hummingbirds or insect wing tones. #3 is turbulence-generated atonal whooshing sounds, which are also widespread in animal flight. #4 are whistles, tonal sounds generated by geometry-induced flow feedback. This mechanism is hypothetical. #5 is aeroelastic flutter, sound generated by elasticity-induced feedback that is usually but not always tonal. This is widespread in birds (feathers are predisposed to flutter) but apparently not bats or insects. Mechanism #6 is rubbing sound (including stridulation), created when bird feathers or insect wings slide past each other. Atonal rubbing sounds are widespread in bird flight and insects; tonal stridulation is widespread in insects. #7 is percussion, created when two stiff elements collide and vibrate, and is present in some birds and insects. Mechanism #8 are tymbals and other bistable conformations. These are stiff elements that snap back and forth between two conformations, producing impulsive, atonal sound. Tymbals are widespread in insects but not birds or bats; insect cuticle appears predisposed to form tymbals. There are few examples of bat wing sounds: are bats intrinsically quiet, or just under-studied? These mechanisms, especially Gutin sound, whooshes, and rubbing (#2, #3, and #6) are prominent cues in ordinary flight of all flying animals, and are the "acoustic substrate" available to be converted from an adventitious sound (cue) into a communication signal. For instance, wing sounds have many times evolved into signals that are incorporated into courtship displays. Conversely, these are the sounds selected to be suppressed if quiet flight is selected for. The physical mechanisms that underlie animal sounds provide context for understanding the ways in which signals and cues may evolve.
Assuntos
Som , Asas de Animais , Animais , Fenômenos Biomecânicos , Aves , Plumas , Voo Animal , InsetosRESUMO
Allen's Hummingbird comprises two subspecies, one migratory (Selasphorus sasin sasin) and one nonmigratory (S. s. sedentarius). The nonmigratory subspecies, previously endemic to the California Channel Islands, apparently colonized the California mainland on the Palos Verdes Peninsula some time before 1970 and now breeds throughout coastal southern California. We sequenced and compared populations of mainland nonmigratory Allen's Hummingbird to Channel Island populations from Santa Catalina, San Clemente, and Santa Cruz Island. We found no evidence of founder effects on the mainland population. Values of nucleotide diversity on the mainland were higher than on the Channel Islands. There were low levels of divergence between the Channel Islands and the mainland, and Santa Cruz Island was the most genetically distinct. Ecological niche models showed that rainfall and temperature variables on the Channel Islands are similar in the Los Angeles basin and predicted continued expansion of nonmigratory Allen's Hummingbird north along the coast and inland. We also reviewed previous genetic studies of vertebrate species found on the Channel Islands and mainland and showed that broad conclusions regarding island-mainland patterns remain elusive. Challenges include the idiosyncratic nature of colonization itself as well as the lack of a comprehensive approach that incorporates similar markers and sampling strategies across taxa, which, within the context of a comparative study of island-mainland relationships, may lead to inconsistent results.
RESUMO
Courtship displays frequently include complex signals that females use to pick a mate. Male Costa's hummingbirds (Calypte costae) generate two acoustic signals during courtship: a vocal song produced close to a female and a dive-sound produced during a courtship dive. The song and dive-sound sound similar, and both were assumed to be produced vocally by the syrinx. Here, we show that they are not; whereas the song is produced by the syrinx, the dive-sound is produced by high-frequency fluttering of the outermost tail feathers. The Anna's hummingbird (Calypte anna), sister to the Costa's, also sings a vocal song and produces a dive-sound with the wings and outermost tail feathers that sounds similar to a portion of the song. The interspecific match in signal form between the two species is not as strong as the intraspecific match. Phylogenetic reconstruction indicates that the dive-sounds may have evolved first, suggesting that the song may have evolved to mimic the dive-sound. We propose the "sexual sensory bias" hypothesis as an explanation for the match in form between the song and the dive-sound within each species, in which we suggest that new sexual signals can arise in response to preexisting female preferences for older sexual signals.
Assuntos
Aves/fisiologia , Comportamento Sexual Animal/fisiologia , Cauda/fisiologia , Vocalização Animal , Animais , Aves/classificação , Plumas/fisiologia , Feminino , Masculino , FilogeniaRESUMO
Coevolution of male and female genitalia in waterfowl has been hypothesized to occur through sexual conflict. This hypothesis raises questions about the functional morphology of the waterfowl penis and the mechanics of copulation in waterfowl, which are poorly understood. We used high-speed video of phallus eversion and histology to describe for the first time the functional morphology of the avian penis. Eversion of the 20 cm muscovy duck penis is explosive, taking an average of 0.36 s, and achieving a maximum velocity of 1.6 m s(-1). The collagen matrix of the penis is very thin and not arranged in an axial-orthogonal array, resulting in a penis that is flexible when erect. To test the hypothesis that female genital novelties make intromission difficult during forced copulations, we investigated penile eversion into glass tubes that presented different mechanical challenges to eversion. Eversion occurred successfully in a straight tube and a counterclockwise spiral tube that matched the chirality of the waterfowl penis, but eversion was significantly less successful into glass tubes with a clockwise spiral or a 135 degrees bend, which mimicked female vaginal geometry. Our results support the hypothesis that duck vaginal complexity functions to exclude the penis during forced copulations, and coevolved with the waterfowl penis via antagonistic sexual conflict.
Assuntos
Conflito Psicológico , Patos/anatomia & histologia , Pênis , Comportamento Sexual Animal , Animais , Patos/fisiologia , Feminino , Genitália Feminina/anatomia & histologia , Genitália Masculina/anatomia & histologia , Pressão Hidrostática , Masculino , Modelos Anatômicos , Pênis/anatomia & histologia , Pênis/fisiologia , Comportamento Sexual Animal/fisiologiaRESUMO
Male hummingbirds have repeatedly evolved sexually dimorphic tails that they use as ornaments during courtship. We examine how male ornament evolution is reflected in female morphology. Lande's two-step model of the evolution of dimorphism predicts that γ (the genetic correlation between the sexes) causes trait elaboration to first evolve quickly in both sexes, then dimorphism evolves more slowly. On the hummingbird phylogeny, tail length does not fit this two-step model; although hummingbirds repeatedly evolved ornamental, elongated tails, dimorphism evolves on the same phylogenetic branch as elongation, implying that γ quickly evolves to be low over phylogenetic timescales. Male "bee" hummingbirds have evolved diverse rectrix shapes that they use to produce sound. Female morphologies exhibit subtle, pervasive correlations with male morphology. No female-adaptive hypotheses explain these correlations, since females do not also make sounds with their tail. Subtle shape similarity has arisen through the genetic correlation with males, and is subject to intralocus sexual conflict. Intralocus sexual conflict may produce increased phenotypic variation of female ornaments. Other evolutionary constraints on tail morphology include a developmental correlation between neighboring tail-feathers, biasing tail elaboration to occur most often at the ends of the feather tract (rectrix 5 or 1) and not the middle.
Assuntos
Aves/anatomia & histologia , Aves/genética , Plumas/anatomia & histologia , Cauda/anatomia & histologia , Animais , Feminino , Masculino , Caracteres SexuaisRESUMO
Owls have specialized feather features hypothesized to reduce sound produced during flight. One of these features is the velvet, a structure composed of elongated filaments termed pennulae that project dorsally from the upper surface of wing and tail feathers. There are two hypotheses of how the velvet functions to reduce sound. According to the aerodynamic noise hypothesis, the velvet reduces sound produced by aerodynamic processes, such as turbulence development on the surface of the wing. Alternatively, under the structural noise hypothesis, the velvet reduces frictional noise produced when two feathers rub together. The aerodynamic noise hypothesis predicts impairing the velvet will increase aerodynamic flight sounds predominantly at low frequency, since turbulence formation predominantly generates low frequency sound; and that changes in sound levels will occur predominantly during the downstroke, when aerodynamic forces are greatest. Conversely, the frictional noise hypothesis predicts impairing the velvet will cause a broadband (i.e., across all frequencies) increase in flight sounds, since frictional sounds are broadband; and that changes in sound levels will occur during the upstroke, when the wing feathers rub against each other the most. Here, we tested these hypotheses by impairing with hairspray the velvet on inner wing feathers (P1-S4) of 13 live barn owls (Tyto alba) and measuring the sound produced between 0.1 and 16 kHz during flapping flight. Relative to control flights, impairing the velvet increased sound produced across the entire frequency range (i.e., the effect was broadband) and the upstroke increased more than the downstroke, such that the upstroke of manipulated birds was louder than the downstroke, supporting the frictional noise hypothesis. Our results suggest that a substantial amount of bird flight sound is produced by feathers rubbing against feathers during flapping flight.