Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15733-15741, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38767271

RESUMO

The interaction of NO2 with organic interfaces is critical in the development of NO2 sensing and trapping technologies, and equally so to the atmospheric processing of marine and continental aerosol. Recent studies point to the importance of surface oxygen groups in these systems, however the role of specific functional groups on the microscopic level has yet to be fully established. In the present study, we aim to provide fundamental information on the interaction and potential binding of NO2 at atmospherically relevant organic interfaces that may also help inform innovation in NO2 sensing and trapping development. We then present an investigation into the structural changes induced by NO2 at the surface of propylene carbonate (PC), an environmentally relevant carbonate ester. Surface-sensitive vibrational spectra of the PC liquid surface are acquired before, during, and after exposure to NO2 using infrared reflection-absorption spectroscopy (IRRAS). Analysis of vibrational changes at the liquid surface reveal that NO2 preferentially interacts with the carbonyl of PC at the interface, forming a distribution of binding symmetries. At low ppm levels, NO2 saturates the PC surface within 10 minutes and the perturbations to the surface are constant over time during the flow of NO2. Upon removal of NO2 flow, and under atmospheric pressures, these interactions are reversible, and the liquid surface structure of PC recovers completely within 30 min.

2.
Langmuir ; 39(15): 5505-5513, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37027519

RESUMO

The chemistry and structure of the air-ocean interface modulate biogeochemical processes between the ocean and atmosphere and therefore impact sea spray aerosol properties, cloud and ice nucleation, and climate. Protein macromolecules are enriched in the sea surface microlayer and have complex adsorption properties due to the unique molecular balance of hydrophobicity and hydrophilicity. Additionally, interfacial adsorption properties of proteins are of interest as important inputs for ocean climate modeling. Bovine serum albumin is used here as a model protein to investigate the dynamic surface behavior of proteins under several variable conditions including solution ionic strength, temperature, and the presence of a stearic acid (C17COOH) monolayer at the air-water interface. Key vibrational modes of bovine serum albumin are examined via infrared reflectance-absorbance spectroscopy, a specular reflection method that ratios out the solution phase and highlights the aqueous surface to determine, at a molecular level, the surface structural changes and factors affecting adsorption to the solution surface. Amide band reflection absorption intensities reveal the extent of protein adsorption under each set of conditions. Studies reveal the nuanced behavior of protein adsorption impacted by ocean-relevant sodium concentrations. Moreover, protein adsorption is most strongly affected by the synergistic effects of divalent cations and increased temperature.


Assuntos
Soroalbumina Bovina , Água , Soroalbumina Bovina/química , Água/química , Adsorção , Temperatura , Cátions , Propriedades de Superfície
3.
Phys Chem Chem Phys ; 25(35): 23963-23976, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37644802

RESUMO

The liquid structure of systems wherein water is limited in concentration or through geometry is of great interest in various fields such as biology, materials science, and electrochemistry. Here, we present a combined polarized Raman and molecular dynamics investigation of the structural changes that occur as water is added incrementally to propylene carbonate (PC), a polar, aprotic solvent that is important in lithium-ion batteries. Polarized Raman spectra of PC solutions were collected for water mole fractions 0.003 ≤ χwater ≤ 0.296, which encompasses the solubility range of water in PC. The novel approach taken herein provides additional hydrogen bond and solvation characterization of this system that has not been achievable in previous studies. Analysis of the polarized carbonyl Raman band in conjunction with simulations demonstrated that the bulk structure of the solvent remained unperturbed upon the addition of water. Experimental spectra in the O-H stretching region were decomposed through Gaussian fitting into sub-bands and comparison to studies of dilute HOD in D2O. With the aid of simulations, we identified these different bands as water arrangements having different degrees of hydrogen bonding. The observed water structure within PC indicates that water tends to self-aggregate, forming a hydrogen bond network that is distinctly different from the bulk and dependent on concentration. For example, at moderate concentrations, the most likely aggregate structures are chains of water molecules, each with two hydrogen bonds.

4.
J Phys Chem A ; 125(46): 10065-10078, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34761931

RESUMO

The temperature-dependent hydration structure of long-chain fatty acids and alcohols at air-water interfaces has great significance in the fundamental interactions underlying ice nucleation in the atmosphere. We present an integrated theoretical and experimental study of the temperature-dependent vibrational structure and electric field character of the immediate hydration shells of fatty alcohol and acid headgroups. We use a combination of surface-sensitive infrared reflection-absorption spectroscopy (IRRAS), surface potentiometry, and ab initio molecular dynamics simulations to elucidate detailed molecular structures of the octadecanoic acid and octadecanol (stearic acid and stearyl alcohol) headgroup hydration shells at room temperature and near freezing. In experiments, the alcohol at high surface concentration exhibits the largest surface potential; yet we observe a strengthening of the hydrogen-bonding for the solvating water molecules near freezing for both the alcohol and the fatty acid IRRAS experiments. Results reveal that the hydration shells for both compounds screen their polar headgroup dipole moments reducing the surface potential at low surface coverages; at higher surface coverage, the polar headgroups become dehydrated, which reduces the screening, correlating to higher observed surface potential values. Lowering the temperature promotes tighter chain packing and an increase in surface potential. IRRAS reveals that the intra- and intermolecular vibrational coupling mechanisms are highly sensitive to changes in temperature. We find that intramolecular coupling dominates the vibrational relaxation pathways for interfacial water determined by comparing the H2O and the HOD spectra. Using ab initio molecular dynamics (AIMD) calculations on cluster systems of propanol + 6H2O and propionic acid + 10H2O, a spectral decomposition scheme was used to correlate the OH stretching motion with the IRRAS spectral features, revealing the effects of intra- and intermolecular coupling on the spectra. Spectra calculated with AIMD reproduce the red shift and increase in intensity observed in experimental spectra corresponding to the OH stretching region of the first solvation shell. These findings suggest that intra- and intermolecular vibrational couplings strongly impact the OH stretching region at fatty acid and fatty alcohol water interfaces. Overall, results are consistent with ice templating behavior for both the fatty acid and the alcohol, yet the surface potential signature is strongest for the fatty alcohol. These findings develop a better understanding of the complex surface potential and spectral signatures involved in ice templating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA