RESUMO
Crop production needs to increase to secure future food supplies, while reducing its impact on ecosystems. Detailed characterization of plant genomes and genetic diversity is crucial for meeting these challenges. Advances in genome sequencing and assembly are being used to access the large and complex genomes of crops and their wild relatives. These have helped to identify a wide spectrum of genetic variation and permitted the association of genetic diversity with diverse agronomic phenotypes. In combination with improved and automated phenotyping assays and functional genomic studies, genomics is providing new foundations for crop-breeding systems.
Assuntos
Produção Agrícola/métodos , Produtos Agrícolas/genética , Genoma de Planta/genética , Automação , Variação Genética , Fenótipo , Melhoramento Vegetal/métodos , Análise de Sequência de DNARESUMO
The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.
Assuntos
Aclimatação/genética , Temperatura Baixa , Diatomáceas/genética , Evolução Molecular , Genoma/genética , Genômica , Alelos , Dióxido de Carbono/metabolismo , Escuridão , Diatomáceas/metabolismo , Congelamento , Perfilação da Expressão Gênica , Deriva Genética , Camada de Gelo , Ferro/metabolismo , Taxa de Mutação , Oceanos e Mares , Filogenia , Recombinação Genética , Transcriptoma/genéticaRESUMO
BACKGROUND: Urine drug testing (UDT) plays a significant role in monitoring patients on chronic opioid therapy (COT) for non-medical opioid use (NMOU). UDT, at times, can be inconsistent and misleading. We present a case where a patient on a buprenorphine patch had false negative results. CASE DESCRIPTION: A female in her 70s with metastatic breast cancer presented with uncontrolled pain from a T6 compression fracture. She had no relief with tramadol 50 mg every 6 hours as needed. Due to an allergic reaction to hydromorphone, our team prescribed a buprenorphine patch of 5 µg/h. Subsequently, she expressed excellent pain control, and the clinician confirmed the patch placement on examination. She underwent a UDT during the visit. The UDT was negative for both buprenorphine and its metabolites. The literature review showed that false negative UDT results are relatively common among patients with low-dose buprenorphine patches. The combination of a thorough physical examination, a review of the Prescription Drug Monitoring Program, and reassuring scores on screening tools placed her at low risk for NMOU. DISCUSSION: Buprenorphine has a ceiling effect on respiratory depression and a lower risk for addiction. However, when used in low doses, the drug might not have enough metabolites in the urine, leading to a false negative UDT. Such results might affect patient-physician relationships. CONCLUSION: In addition to the UDT, a thorough history, screening for NMOU, physical exam, a review of PDMP, and a good understanding of opioid metabolism are necessary to help guide pain management.
RESUMO
In recent years, the use of longer range read data combined with advances in assembly algorithms has stimulated big improvements in the contiguity and quality of genome assemblies. However, these advances have not directly transferred to metagenomic data sets, as assumptions made by the single genome assembly algorithms do not apply when assembling multiple genomes at varying levels of abundance. The development of dedicated assemblers for metagenomic data was a relatively late innovation and for many years, researchers had to make do using tools designed for single genomes. This has changed in the last few years and we have seen the emergence of a new type of tool built using different principles. In this review, we describe the challenges inherent in metagenomic assemblies and compare the different approaches taken by these novel assembly tools.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma , Análise de Sequência de DNA/métodos , Algoritmos , Animais , Humanos , Microbiota/genética , Plantas/genéticaRESUMO
OBJECTIVE: To evaluate the pharmacology, pharmacokinetics, clinical efficacy, safety, dosing, cost, and clinical implications of enfortumab vedotin-ejfv (EV) in the treatment of locally advanced or metastatic urothelial carcinoma (UC). DATA SOURCES: A literature search of PubMed (inception to August 2020) was conducted using the terms enfortumab, vedotin, Padcev, and Nectin. Data were also obtained from package inserts, meeting abstracts, and ongoing studies from ClinicalTrials.gov. STUDY SELECTION AND DATA EXTRACTION: All relevant published articles, package inserts, and meeting abstracts evaluating EV for the treatment of UC were analyzed. DATA SYNTHESIS: Antibody-drug conjugates (ADCs) deliver potent cytotoxic agents using highly selective monoclonal antibodies. Targeting the near-universal expression of Nectin-4 on UC cells is a viable therapeutic strategy. In a pivotal phase II trial, EV demonstrated an overall response rate of 44%, and a median duration of response of 7.6 months. Estimated overall survival was 11.7 months with a median estimated progression-free survival of 5.6 months. Results were similar among difficult-to-treat patients, including those with liver metastases. Unique toxicity concerns with EV require careful consideration and monitoring. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: EV, a first-in-class anti-Nectin-4 ADC, provides impressive response rates with manageable toxicities, making it a promising treatment option for patients with multiply relapsed or refractory UC. CONCLUSION: The US Food and Drug Administration-approved EV demonstrates antitumor activity in heavily pretreated patients with UC but harbors important adverse effects and financial concerns. Additional studies are required to identify the optimal sequencing, patient population, and place in therapy for EV.
Assuntos
Carcinoma de Células de Transição , Imunoconjugados , Preparações Farmacêuticas , Neoplasias da Bexiga Urinária , Neoplasias Urológicas , Anticorpos Monoclonais , HumanosRESUMO
OBJECTIVE: To provide an overview of clinical recommendations regarding genomic medicine relating to pain management and opioid use disorder. DATA SOURCES: A literature review was conducted using the search terms pain management, pharmacogenomics, pharmacogenetics, pharmacokinetics, pharmacodynamics, and opioids on PubMed (inception to February 1, 2021), CINAHL (2016 through February 1, 2021), and EMBASE (inception through February 1, 2021). STUDY SELECTION AND DATA EXTRACTION: All relevant clinical trials, review articles, package inserts, and guidelines evaluating applicable pharmacogenotypes were considered for inclusion. DATA SYNTHESIS: More than 300 Food and Drug Administration-approved medications contain pharmacogenomic information in their labeling. Genetic variability may alter the therapeutic effects of commonly prescribed pain medications. Pharmacogenomic-guided therapy continues to gain traction in clinical practice, but a multitude of barriers to widespread pharmacogenomic implementation exist. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: Pain is notoriously difficult to treat given the need to balance safety and efficacy when selecting pharmacotherapy. Pharmacogenomic data can help optimize outcomes for patients with pain. With improved technological advances, more affordable testing, and a better understanding of genomic variants resulting in treatment disparities, pharmacogenomics continues to gain popularity. Unfortunately, despite these and other advancements, pharmacogenomic testing and implementation remain underutilized and misunderstood in clinical care, in part because of a lack of health care professionals trained in assessing and implementing test results. CONCLUSIONS: A one-size-fits-all approach to pain management is inadequate and outdated. With increasing genomic data and pharmacogenomic understanding, patient-specific genomic testing offers a comprehensive and personalized treatment alternative worthy of additional research and consideration.
Assuntos
Preparações Farmacêuticas , Farmacogenética , Humanos , Dor/tratamento farmacológico , Dor/genética , Manejo da Dor , Testes FarmacogenômicosRESUMO
Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.
Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma de Planta , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Translocação Genética , Triticum/genética , Algoritmos , Mapeamento de Sequências Contíguas/normas , Anotação de Sequência Molecular/normas , Polimorfismo Genético , PoliploidiaRESUMO
Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
Assuntos
Sequência Conservada/genética , Genoma/genética , Peixe-Zebra/genética , Animais , Cromossomos/genética , Evolução Molecular , Feminino , Genes/genética , Genoma Humano/genética , Genômica , Humanos , Masculino , Meiose/genética , Anotação de Sequência Molecular , Pseudogenes/genética , Padrões de Referência , Processos de Determinação Sexual/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
BACKGROUND: The Oxford Nanopore Technologies MinION™ sequencer is a small, portable, low cost device that is accessible to labs of all sizes and attractive for in-the-field sequencing experiments. Selective breeding of crops has led to a reduction in genetic diversity, and wild relatives are a key source of new genetic resistance to pathogens, usually via NLR immune receptor-encoding genes. Recent studies have demonstrated how crop NLR repertoires can be targeted for sequencing on Illumina or PacBio (RenSeq) and the specific gene conveying pathogen resistance identified. RESULTS: Sequence yields per MinION run are lower than Illumina, making targeted resequencing an efficient approach. While MinION generates long reads similar to PacBio it doesn't generate the highly accurate multipass consensus reads, which presents downstream bioinformatics challenges. Here we demonstrate how MinION data can be used for RenSeq achieving similar results to the PacBio and how novel NLR gene fusions can be identified via a Nanopore RenSeq pipeline. CONCLUSION: The described library preparation and bioinformatics methods should be applicable to other gene families or any targeted long DNA fragment nanopore sequencing project.
Assuntos
Plantas/genética , Plantas/imunologia , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência/métodos , Genes de Plantas/genética , Plantas/microbiologiaRESUMO
MOTIVATION: The Oxford Nanopore MinION sequencer, currently in pre-release testing through the MinION Access Programme (MAP), promises long reads in real-time from an inexpensive, compact, USB device. Tools have been released to extract FASTA/Q from the MinION base calling output and to provide basic yield statistics. However, no single tool yet exists to provide comprehensive alignment-based quality control and error profile analysis--something that is extremely important given the speed with which the platform is evolving. RESULTS: NanoOK generates detailed tabular and graphical output plus an in-depth multi-page PDF report including error profile, quality and yield data. NanoOK is multi-reference, enabling detailed analysis of metagenomic or multiplexed samples. Four popular Nanopore aligners are supported and it is easily extensible to include others. AVAILABILITY AND IMPLEMENTATION: NanoOK is an open-source software, implemented in Java with supporting R scripts. It has been tested on Linux and Mac OS X and can be downloaded from https://github.com/TGAC/NanoOK. A VirtualBox VM containing all dependencies and the DH10B read set used in this article is available from http://opendata.tgac.ac.uk/nanook/. A Docker image is also available from Docker Hub--see program documentation https://documentation.tgac.ac.uk/display/NANOOK. CONTACT: richard.leggett@tgac.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Confiabilidade dos Dados , Nanoporos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA , Software , Sequência de Bases , Escherichia coli K12/genéticaRESUMO
Oxford Nanopore Technologies' MinION sequencer was launched in pre-release form in 2014 and represents an exciting new sequencing paradigm. The device offers multi-kilobase reads and a streamed mode of operation that allows processing of reads as they are generated. Crucially, it is an extremely compact device that is powered from the USB port of a laptop computer, enabling it to be taken out of the lab and facilitating previously impossible in-field sequencing experiments to be undertaken. Many of the initial publications concerning the platform focused on provision of tools to access and analyse the new sequence formats and then demonstrating the assembly of microbial genomes. More recently, as throughput and accuracy have increased, it has been possible to begin work involving more complex genomes and metagenomes. With the release of the high-throughput GridION X5 and PromethION platforms, the sequencing of large genomes will become more cost efficient, and enable the leveraging of extremely long (>100 kb) reads for resolution of complex genomic structures. This review provides a brief overview of nanopore sequencing technology, describes the growing range of nanopore bioinformatics tools, and highlights some of the most influential publications that have emerged over the last 2 years. Finally, we look to the future and the potential the platform has to disrupt work in human, microbiome, and plant genomics.
Assuntos
Biologia Computacional/métodos , Genoma de Planta/genética , Nanoporos , Plantas/genética , Análise de Sequência de DNA/métodos , Biologia Computacional/instrumentação , Genoma Humano/genética , Humanos , Microbiota/genética , Análise de Sequência de DNA/instrumentaçãoRESUMO
The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo.
Assuntos
Ligantes da Sinalização Nodal/metabolismo , Organizadores Embrionários/embriologia , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Técnicas de Silenciamento de Genes , Hibridização In Situ , Microscopia Eletrônica , Morfolinos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra/metabolismo , Proteínas rab5 de Ligação ao GTP/genéticaRESUMO
SUMMARY: Illumina's recently released Nextera Long Mate Pair (LMP) kit enables production of jumping libraries of up to 12 kb. The LMP libraries are an invaluable resource for carrying out complex assemblies and other downstream bioinformatics analyses such as the characterization of structural variants. However, LMP libraries are intrinsically noisy and to maximize their value, post-sequencing data analysis is required. Standardizing laboratory protocols and the selection of sequenced reads for downstream analysis are non-trivial tasks. NextClip is a tool for analyzing reads from LMP libraries, generating a comprehensive quality report and extracting good quality trimmed and deduplicated reads. AVAILABILITY AND IMPLEMENTATION: Source code, user guide and example data are available from https://github.com/richardmleggett/nextclip/.
Assuntos
Proteínas de Arabidopsis/genética , Biologia Computacional/métodos , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Arabidopsis/genéticaRESUMO
Low coverage 'genome-skims' are often used to assemble organelle genomes and ribosomal gene sequences for cost-effective phylogenetic and barcoding studies. Natural history collections hold invaluable biological information, yet poor preservation resulting in degraded DNA often hinders polymerase chain reaction-based analyses. However, it is possible to generate libraries and sequence the short fragments typical of degraded DNA to generate genome-skims from museum collections. Here we introduce a snakemake toolkit comprised of three pipelines skim2mito, skim2rrna and gene2phylo, designed to unlock the genomic potential of historical museum specimens using genome skimming. Specifically, skim2mito and skim2rrna perform the batch assembly, annotation and phylogenetic analysis of mitochondrial genomes and nuclear ribosomal genes, respectively, from low-coverage genome skims. The third pipeline gene2phylo takes a set of gene alignments and performs phylogenetic analysis of individual genes, partitioned analysis of concatenated alignments and a phylogenetic analysis based on gene trees. We benchmark our pipelines with simulated data, followed by testing with a novel genome skimming dataset from both recent and historical solariellid gastropod samples. We show that the toolkit can recover mitochondrial and ribosomal genes from poorly preserved museum specimens of the gastropod family Solariellidae, and the phylogenetic analysis is consistent with our current understanding of taxonomic relationships. The generation of bioinformatic pipelines that facilitate processing large quantities of sequence data from the vast repository of specimens held in natural history museum collections will greatly aid species discovery and exploration of biodiversity over time, ultimately aiding conservation efforts in the face of a changing planet.
RESUMO
All species shed DNA during life or in death, providing an opportunity to monitor biodiversity via environmental DNA (eDNA). In recent years, combining eDNA, high-throughput sequencing technologies, bioinformatics, and increasingly complete sequence databases has promised a non-invasive and non-destructive environmental monitoring tool. Modern agricultural systems are often large monocultures and so are highly vulnerable to disease outbreaks. Pest and pathogen monitoring in agricultural ecosystems is key for efficient and early disease prevention, lower pesticide use, and better food security. Although the air is rich in biodiversity, it has the lowest DNA concentration of all environmental media and yet is the route for windborne spread of many damaging crop pathogens. Our work suggests that ecosystems can be monitored efficiently using airborne nucleic acid information. Here, we show that the airborne DNA of microbes can be recovered, shotgun sequenced, and taxonomically classified, including down to the species level. We show that by monitoring a field growing key crops we can identify the presence of agriculturally significant pathogens and quantify their changing abundance over a period of 1.5 months, often correlating with weather variables. We add to the evidence that aerial eDNA can be used as a source for biomonitoring in terrestrial ecosystems, specifically highlighting agriculturally relevant species and how pathogen levels correlate with weather conditions. Our ability to detect dynamically changing levels of species and strains highlights the value of airborne eDNA in agriculture, monitoring biodiversity changes, and tracking taxa of interest.
Assuntos
Agricultura , Biodiversidade , Metagenômica , Metagenômica/métodos , DNA Ambiental/análise , DNA Ambiental/genética , Microbiologia do Ar , Ecossistema , Monitoramento Ambiental/métodos , Metagenoma , Produtos Agrícolas/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificaçãoRESUMO
Zoo populations of threatened species are a valuable resource for the restoration of wild populations. However, their small effective population size poses a risk to long-term viability, especially in species with high genetic load. Recent bioinformatic developments can identify harmful genetic variants in genome data. Here, we advance this approach, analysing the genetic load in the threatened pink pigeon (Nesoenas mayeri). We lifted the mutation-impact scores that had been calculated for the chicken (Gallus gallus) to estimate the genetic load in six pink pigeons. Additionally, we perform in silico crossings to predict the genetic load and realized load of potential offspring. We thus identify the optimal mate pairs that are theoretically expected to produce offspring with the least inbreeding depression. We use computer simulations to show how genomics-informed conservation can reduce the genetic load whilst reducing the loss of genome-wide diversity. Genomics-informed management is likely to become instrumental in maintaining the long-term viability of zoo populations.
Assuntos
Cruzamento , Columbidae , Columbidae/genética , Columbidae/fisiologia , Animais , Animais de Zoológico , Carga Genética , Cruzamento/métodos , Genômica , Conservação dos Recursos Naturais , Simulação por Computador , Depressão por EndogamiaRESUMO
Antarctic krill (Euphausia superba Dana) is a keystone species in the Southern Ocean ecosystem, with ecological and commercial significance. However, its vulnerability to climate change requires an urgent investigation of its adaptive potential to future environmental conditions. Historical museum collections of krill from the early 20th century represent an ideal opportunity to investigate how krill have changed over time due to predation, fishing and climate change. However, there is currently no cost-effective method for implementing population scale collection genomics for krill given its genome size (48 Gbp). Here, we assessed the utility of two inexpensive methods for population genetics using historical krill samples, specifically low-coverage shotgun sequencing (i.e. 'genome-skimming') and exome capture. Two full-length transcriptomes were generated and used to identify 166 putative gene targets for exome capture bait design. A total of 20 historical krill samples were sequenced using shotgun and exome capture. Mitochondrial and nuclear ribosomal sequences were assembled from both low-coverage shotgun and off-target of exome capture data demonstrating that endogenous DNA sequences could be assembled from historical collections. Although, mitochondrial and ribosomal sequences are variable across individuals from different populations, phylogenetic analysis does not identify any population structure. We find exome capture provides approximately 4500-fold enrichment of sequencing targeted genes, suggesting this approach can generate the sequencing depth required to call identify a significant number of variants. Unlocking historical collections for genomic analyses using exome capture, will provide valuable insights into past and present biodiversity, resilience and adaptability of krill populations to climate change.
Assuntos
Euphausiacea , Genética Populacional , Euphausiacea/genética , Euphausiacea/classificação , Animais , Genética Populacional/métodos , Exoma/genética , Técnicas de Genotipagem/métodos , Regiões Antárticas , Genótipo , Análise de Sequência de DNA/métodos , FilogeniaRESUMO
When caring for patients nearing the end of live (EOL), healthcare providers must carefully assess the potential benefits and drawbacks of common medical interventions, such as starting antibiotic treatment. Antibiotic use during this stage can be a challenging and multifaceted situation, encompassing important clinical, social, and ethical considerations. While physicians may be motivated to prescribe antibiotics to terminally ill patients in hopes of prolonging survival and alleviating symptoms, it's crucial to recognize that these drugs can have significant implications for individuals at the EOL. Factors like advanced age, frailty, and multiple medication use make these patients more vulnerable to adverse events caused by antibiotics. For instance, fluoroquinolones, a specific type of antibiotics, have been linked to central nervous system toxicity and neurological side effects, including seizures. Geriatric patients, who often have underlying risk factors, are particularly susceptible to fluoroquinolone-induced seizures. However, there have also been reports of otherwise healthy individuals experiencing seizures as a result of fluoroquinolone use. This report sheds light on the complexities associated with initiating antibiotic therapy in patients nearing the EOL.
Assuntos
Cuidados Paliativos na Terminalidade da Vida , Assistência Terminal , Humanos , Idoso , Fluoroquinolonas/efeitos adversos , Antibacterianos/efeitos adversos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológicoRESUMO
BACKGROUND: The CAGE-AID questionnaire (Cut-down, Annoyed, Guilty, Eye-opener scale Adapted to Include Drugs) is used to screen patients for substance use disorder and nonmedical opioid use (NMOU). Major pain guidelines encourage using such screening tools for all patients including cancer patients before initiating opioids. We present two cases where the CAGE-AID results did not accurately identify the risk for NMOU. CASE DESCRIPTION: Patient 1 is a male in his 60s with metastatic prostate cancer was admitted for uncontrolled pain. Imaging revealed extensive spinal metastasis, needing initiation of methadone and hydromorphone. The CAGE-AID score was positive, placing him at risk for NMOU. This likely biased the providers, delaying opioid titration. Subsequently, doses were adjusted, and he was discharged with adequate pain control and no evidence of NMOU. Patient 2 is a male in his 40s with metastatic cholangiocarcinoma admitted for uncontrolled abdominal pain. The patient had multiple hospitalizations at different facilities with similar symptoms. The CAGE-AID score was negative. Despite this, the patient demonstrated behaviors such as demanding intravenous opioids, dose escalation, or interventions such as nerve blocks. The workup did not identify any etiology for the increased pain. The patient left the hospital against medical advice when his demands for intravenous opioids were not met. CONCLUSIONS: The CAGE-AID questionnaire alone does not accurately identify risks for NMOU. Screening tools must always be accompanied by a thorough clinical assessment of behaviors and pain mechanism. More research is needed to better characterize CAGE-AID false positives and negatives among patients with cancer pain.