Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Anat ; 240(3): 466-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34648184

RESUMO

Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade-off between jump distance and acceleration as body size changes at both the inter- and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross-sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomys spp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40-150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free-ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross-sectional area scaled with positive allometry. Ankle extensor tendon cross-sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single-strike predators, such as snakes and owls, likely drives this relationship.


Assuntos
Dipodomys , Músculo Esquelético , Animais , Articulação do Tornozelo/fisiologia , Dipodomys/fisiologia , Membro Posterior/anatomia & histologia , Locomoção/fisiologia , Músculo Esquelético/anatomia & histologia , Tendões/anatomia & histologia
2.
J Exp Biol ; 225(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36453156

RESUMO

Pit vipers detect infrared radiation by means of temperature contrasts created on their pit organ membranes. Signals from pit organs integrate with visual signals in the optic tectum, leading to the conjecture that the facial pits operate as an extension of the visual system. Because similar mechanisms underlie thermal imaging technology, imagery from thermal cameras is often used to infer how pit vipers perceive their environment. However, pit organs lack a focusing mechanism, and biophysical models predict that pit organs should have poor spatial resolution compared with thermal imaging cameras. Nevertheless, behavioral studies occasionally suggest pits may have better resolution than predicted by biophysical models, indicating that processing in the central nervous system may improve imaging. To estimate the spatial resolution of the neural image informing behavior, we recorded snake responses evoked by targets moving across backgrounds composed of two contrasting temperatures with an average temperature equal to the target temperature. An unresolved background would appear uniform; thus, the target would be detectable only if the background pattern were resolved. Western rattlesnakes (Crotalus oreganus) displayed no statistically significant responses to targets presented in front of patterned backgrounds, regardless of the temperature contrasts or spatial frequencies within the background, but responded strongly to targets presented in front of homogeneous backgrounds. We found no evidence that the pit organ system can resolve spatial details subtending an angle of 9 deg or less. We discuss the implications of these results for understanding pit organ function in ecologically relevant habitats with thermal heterogeneity.


Assuntos
Crotalinae , Animais , Termografia , Temperatura , Crotalus/fisiologia , Órgãos dos Sentidos , Serpentes
3.
Proc Biol Sci ; 288(1944): 20202631, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33563122

RESUMO

Ecologists have long theorized that apex predators stabilize trophic systems by exerting a net protective effect on the basal resource of a food web. Although experimental and observational studies have borne this out, it is not always clear what behavioural mechanisms among the trophically connected species are responsible for this stability. Fear of intraguild predation is commonly identified as one such mechanism in models and mesocosm studies, but empirical evidence in natural systems remains limited, as the complexity of many trophic systems renders detailed behavioural studies of species interactions challenging. Here, we combine long-term field observations of a trophic system in nature with experimental behavioural studies of how all the species in this system interact, in both pairs and groups. The results demonstrate how an abundant, sessile and palatable prey item (sea turtle eggs, Chelonia mydas) survives when faced by three potential predators that all readily eat eggs: an apex predator (the stink ratsnake, Elaphe carinata) and two mesopredators (the brown rat, Rattus norvegicus, and kukri snake, Oligodon formosanus). Our results detail how fear of intraguild predation, conspecific cannibalism, habitat structure and territorial behaviour among these species interact in a complex fashion that results in high egg survival.


Assuntos
Tartarugas , Animais , Canibalismo , Medo , Cadeia Alimentar , Comportamento Predatório , Ratos
4.
J Evol Biol ; 34(9): 1447-1465, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34322920

RESUMO

Predator-prey interactions often lead to the coevolution of adaptations associated with avoiding predation and, for predators, overcoming those defences. Antagonistic coevolutionary relationships are often not simple interactions between a single predator and prey but rather a complex web of interactions between multiple coexisting species. Coevolution between venomous rattlesnakes and small mammals has led to physiological venom resistance in several mammalian taxa. In general, viperid venoms contain large quantities of snake venom metalloproteinase toxins (SVMPs), which are inactivated by SVMP inhibitors expressed in resistant mammals. We explored variation in venom chemistry, SVMP expression, and SVMP resistance across four co-distributed species (California Ground Squirrels, Bryant's Woodrats, Southern Pacific Rattlesnakes, and Red Diamond Rattlesnakes) collected from four different populations in Southern California. Our aim was to understand phenotypic and functional variation in venom and venom resistance in order to compare coevolutionary dynamics of a system involving two sympatric predator-prey pairs to past studies that have focused on single pairs. Proteomic analysis of venoms indicated that these rattlesnakes express different phenotypes when in sympatry, with Red Diamonds expressing more typical viperid venom (with a diversity of SVMPs) and Southern Pacifics expressing a more atypical venom with a broader range of non-enzymatic toxins. We also found that although blood sera from both mammals were generally able to inhibit SVMPs from both rattlesnake species, inhibition depended strongly on the snake population, with snakes from one geographic site expressing SVMPs to which few mammals were resistant. Additionally, we found that Red Diamond venom, rather than woodrat resistance, was locally adapted. Our findings highlight the complexity of coevolutionary relationships between multiple predators and prey that exhibit similar offensive and defensive strategies in sympatry.


Assuntos
Venenos de Crotalídeos , Crotalus , Animais , Fenótipo , Proteômica , Simpatria
5.
J Exp Biol ; 223(Pt 14)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32561628

RESUMO

Movements of ectotherms are constrained by their body temperature owing to the effects of temperature on muscle physiology. As physical performance often affects the outcome of predator-prey interactions, environmental temperature can influence the ability of ectotherms to capture prey and/or defend themselves against predators. However, previous research on the kinematics of ectotherms suggests that some species may use elastic storage mechanisms when attacking or defending, thereby mitigating the effects of sub-optimal temperature. Rattlesnakes (Crotalus spp.) are a speciose group of ectothermic viperid snakes that rely on crypsis, rattling and striking to deter predators. We examined the influence of body temperature on the behavior and kinematics of two rattlesnake species (Crotalus oreganus helleri and Crotalus scutulatus) when defensively striking towards a threatening stimulus. We recorded defensive strikes at body temperatures ranging from 15-35°C. We found that strike speed and speed of mouth gaping during the strike were positively correlated with temperature. We also found a marginal effect of temperature on the probability of striking, latency to strike and strike outcome. Overall, warmer snakes are more likely to strike, strike faster, open their mouth faster and reach maximum gape earlier than colder snakes. However, the effects of temperature were less than would be expected for purely muscle-driven movements. Our results suggest that, although rattlesnakes are at a greater risk of predation at colder body temperatures, their decrease in strike performance may be mitigated to some extent by employing mechanisms in addition to skeletal muscle contraction (e.g. elastic energy storage) to power strikes.


Assuntos
Temperatura Corporal , Crotalus , Comportamento Predatório , Animais , Temperatura Baixa , Temperatura
6.
Oecologia ; 194(3): 415-425, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32935179

RESUMO

Sexual selection studies often focus on morphological traits that are important only in the later stages of mate acquisition. Comparatively little is known about traits that lead to mate acquisition, such as mate-searching activities. We experimentally manipulated body condition (i.e., the energy reserves) in male puff adders (Bitis arietans) prior to the mating season using supplemental feeding in the field, and used radio-telemetry and DNA paternity analyses to characterize the relationships between male energy reserves, mating activities, and reproductive success. We found that male mobility is a strongly sexually selected trait because males that travelled further in search of females have higher female encounter rates and reproductive success. However, supplemental feeding did not have a significant effect on mating activities or reproductive success, because control snakes compensated by foraging more often during the mating season. The time invested in foraging by control snakes did not come at the costs of decreased mating activities or opportunity compared to fed snakes, because the latter spent the spare time resting. Our experimental field research directly demonstrates the link between male mobility and reproductive success, identifying the ultimate mechanism leading to the evolution of prolonged male mate-searching activities in snakes, and indicates that male puff adders, presumed capital breeders, adjust their breeding tactics according to resource availability.


Assuntos
Cruzamento , Reprodução , Animais , Feminino , Masculino , Fenótipo , Estações do Ano , Comportamento Sexual Animal , Serpentes
7.
Oecologia ; 194(3): 427-428, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33051775

RESUMO

The authors would like to correct the error in table 4 which was incorrectly published in original version. Correct version of Table 4 is updated here.

8.
Artigo em Inglês | MEDLINE | ID: mdl-29218413

RESUMO

Rattlesnakes use infrared radiation to detect prey animals such as small mammals and lizards. Because ectotherm locomotor performance depends on temperature, rattlesnakes could use prey temperature to evaluate the potential of lizards to evade attacks. Here, we tested whether hunting rattlesnakes use infrared information to (1) detect and (2) evaluate prey before attack. We expected thermal contrast between prey and background to be the best predictor of predatory behaviour under the prey detection hypothesis, and absolute prey temperature under the prey evaluation hypothesis. We presented lizard carcasses of varying temperatures to free-ranging sidewinder rattlesnakes (Crotalus cerastes) and scored behavioural responses as a function of thermal contrast, absolute lizard temperature, and light level. Thermal contrast and light level were the most salient predictors of snake behaviour. Snakes were more likely to respond to lizards and/or respond at greater distances at night and when thermal contrast was high, supporting the known prey detection function of infrared sensing. Absolute lizard temperature was not an important predictor of snake behaviour; thus, we found no evidence for temperature-based prey evaluation. Infrared sensing is still poorly understood in ecologically relevant contexts; future research will test whether rattlesnakes learn to evaluate prey based on temperature with experience.


Assuntos
Crotalus , Comportamento Predatório , Sensação Térmica , Animais , Crotalus/fisiologia , Raios Infravermelhos , Lagartos , Atividade Motora , Fotoperíodo , Comportamento Predatório/fisiologia , Temperatura
9.
J Exp Biol ; 221(Pt 17)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29997162

RESUMO

The pit organ defining pit vipers (Crotalinae) contains a membrane covered with temperature receptors that detect thermal radiation from environmental surfaces. Temperature is both the environmental parameter being sensed and the mechanism by which the pit membrane detects the signal. As snakes are ectotherms, temperature also has a strong influence on neurological and locomotor responses to the signal. This study of Pacific rattlesnakes (Crotalus oreganus) systematically examined the effect of body, target and background temperatures on response to a moving target. We presented each snake with a moving pendulum bob regulated at a series of six temperatures against a uniform background regulated at one of three temperatures. Snake body temperatures varied from 18 to 36°C. As expected, we found stronger responses to positive contrasts (target warmer than background) than to negative contrasts, and stronger responses to greater contrasts. However, the effect of body temperature was contrary to expectations based on studies of the TRPA1 ion channel (believed to be the molecular basis for pit membrane temperature receptors) and typical thermal reaction norms for neural and motor performance. These predict (1) no response below the threshold where the TRPA1 channel opens, (2) response increasing as temperature increases, peaking near preferred body temperature, and (3) declining thereafter. Remarkably, this behavioral response decreased as body temperature increased from 18 to 36°C, with no threshold or peak in this range. We review various possible physiological mechanisms related to body temperature proposed in the literature, but find none that can satisfactorily explain this result.


Assuntos
Temperatura Corporal , Temperatura Baixa , Crotalus/fisiologia , Meio Ambiente , Temperatura Alta , Raios Infravermelhos , Animais , Regulação da Temperatura Corporal , Estimulação Luminosa
10.
J Therm Biol ; 65: 8-15, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28343580

RESUMO

Increasing temperature due to climate change is one of the greatest challenges for wildlife worldwide. Behavioral data on free-ranging individuals is necessary to determine at what temperatures animals modify activity as this would determine their capacity to continue to move, forage, and mate under altered thermal regimes. In particular, high temperatures could limit available surface activity time and time spent on fitness-related activities. Conversely, performance, such as feeding rate, can increase with temperature potentially having positive fitness effects. Here, we examine how the hunting behaviors of free-ranging Northern Pacific Rattlesnakes (Crotalus oreganus) associate with air temperature and body temperature. We continuously recorded snakes in the field using videography, capturing behaviors rarely considered in past studies such as movements in and out of refuge and strikes on prey. We found that as mean daily air temperature increased, hunting activity and the likelihood of hunting at night decreased, while the number of movements and distance moved per day increased. Snakes typically retreated to refuge before body temperatures reached 31°C. Body temperatures of snakes hunting on the surface were lower compared to temperatures of non-hunting snakes in refuge in the morning, while this relationship was inverted in the afternoon. Snake body size influenced the disparity of these temperatures. Finally, strike initiation and success occurred across a wide range of body temperatures, indicating hunting performance may not be strongly constrained by temperature. These results on the temperatures at which free-ranging rattlesnakes exhibit fitness-related behaviors could be valuable for understanding their vulnerabilities to future climates.


Assuntos
Crotalus/fisiologia , Comportamento Predatório , Animais , Temperatura Corporal , Mudança Climática , Estações do Ano , Temperatura
11.
Gen Comp Endocrinol ; 208: 85-93, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25169835

RESUMO

Steroid hormones regulate many aspects of reproductive physiology and behavior, including parental care. Reptiles display a variety of egg- and neonate-directed parental behaviors, yet few studies have addressed their endocrine correlates. Viviparous female pitvipers remain at the birth site with their young for one to two weeks until neonates complete their first shed cycle ('ecdysis'). To study possible relationships between steroid hormones and these behaviors, we conducted a captive study on wild-caught pregnant cottonmouths. Females were divided into two treatment groups: Maternal Attendance (MA) - females were allowed a maternal attendance period, where neonates were left with the mother until they completed ecdysis and then were removed; Separated (SE) - females had their neonates removed within 24h of birth. Serial blood samples were collected from MA females at various points during and after attendance; SE females had samples collected on a similar temporal schedule. Plasma levels of progesterone (P), estradiol (E2), testosterone (T), and corticosterone (CORT) were measured in all samples. We did not find a difference in the overall pattern of P, E2, or T between MA and SE females; however, MA females exhibited a significant peak in CORT on the day that neonates shed that was not observed in SE females. It is possible that the elevated CORT observed in MA females was stimulated by increased activity and/or changing chemical cues of shedding neonates. Based on evidence that free-ranging pitvipers cease MA when all offspring complete ecdysis, we hypothesize that CORT has a role in signaling mothers to terminate care and disperse.


Assuntos
Agkistrodon/sangue , Estruturas Animais/metabolismo , Hormônios/sangue , Comportamento Materno , Animais , Animais Recém-Nascidos , Corticosterona/sangue , Estradiol/sangue , Feminino , Humanos , Parto , Progesterona/sangue , Testosterona/sangue , Fatores de Tempo , Estados Unidos
12.
Ecol Evol ; 14(3): e11067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435021

RESUMO

Climate change has the potential to disrupt species interactions across global ecosystems. Ectotherm-endotherm interactions may be especially prone to this risk due to the possible mismatch between the species in physiological response and performance. However, few studies have examined how changing temperatures might differentially impact species' niches or available suitable habitat when they have very different modes of thermoregulation. An ideal system for studying this interaction is the predator-prey system. In this study, we used ecological niche modeling to characterize the niche overlap and examine biogeography in past and future climate conditions of prairie rattlesnakes (Crotalus viridis) and Ord's kangaroo rats (Dipodomys ordii), an endotherm-ectotherm pair typifying a predator-prey species interaction. Our models show a high niche overlap between these two species (D = 0.863 and I = 0.979) and further affirm similar paleoecological distributions during the last glacial maximum (LGM) and mid-Holocene (MH). Under future climate change scenarios, we found that prairie rattlesnakes may experience a reduction in overall suitable habitat (RCP 2.6 = -1.82%, 4.5 = -4.62%, 8.5 = -7.34%), whereas Ord's kangaroo rats may experience an increase (RCP 2.6 = 9.8%, 4.5 = 11.71%, 8.5 = 8.37%). We found a shared trend of stable suitable habitat at northern latitudes but reduced suitability in southern portions of the range, and we propose future monitoring and conservation be focused on those areas. Overall, we demonstrate a biogeographic example of how interacting ectotherm-endotherm species may have mismatched responses under climate change scenarios and the models presented here can serve as a starting point for further investigation into the biogeography of these systems.

13.
Ecol Evol ; 14(7): e70005, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988347

RESUMO

Islands have played a key role in our understanding of rapid evolution. A large body of literature has examined morphological changes in response to insularity and isolation, which has yielded useful generalizations about how animals can adapt to live in very small geographic areas. However, understanding the evolution of morphological variation in insular populations often requires detailed data sets on longitudinal patterns of growth and development, and such studies typically necessitate long-term mark-recapture on a large sample of individuals. Rattlesnakes provide a unique opportunity to address some of these difficulties because the addition of rattle segments to the rattle string occurs with regular periodicity and their size directly correlates with the body size of the snake at the time of the ecdysis cycle generating the segment. Here, we used a large database of rattle segment sizes recorded from island (Isla Coronado Sur, Baja California, Mexico) and mainland (Camp Pendleton, California, United States) populations of Western Rattlesnakes (Crotalus oreganus and C. o. caliginis) that separated approximately 10,000 years ago to compare body sizes at different ecdysis cycles, which allowed us to assess differences in growth rates and patterns of sexual size dimorphism. Our results show that rattlesnakes on Isla Coronado Sur appear to be born smaller and grow more slowly than their mainland counterparts, resulting in a "dwarfed" island population. However, despite significant differences in body size, both populations exhibited the same degree of sexual dimorphism. Our study demonstrates the potential to use rattle characteristics to recover detailed estimates of fundamental demographic parameters.

14.
Sci Adv ; 9(50): eadj7052, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091400

RESUMO

Marine subsidies are vital for terrestrial ecosystems, especially low-productivity islands. However, the impact of losing these subsidies on the terrestrial food web can be difficult to predict. We analyzed 23 years of survey data from Orchid Island to assess the consequences of the abrupt loss of an important marine subsidy. After climate-driven beach erosion and predator exclusion efforts resulted in the abrupt loss of sea turtle eggs from the terrestrial food web, predatory snakes altered their foraging habitats. This increased predation on other reptile species in inland areas, resulting in population declines in most terrestrial reptile species. Comparisons with sea turtle-free locations where lizard populations remained stable supported these findings. Our study emphasizes the cascading effects of generalist predators and the unintended consequences of single-species conservation, highlighting the importance of understanding species interconnectedness and considering potential ripple effects in marine-dependent insular ecosystems.


Assuntos
Lagartos , Tartarugas , Animais , Ecossistema , Cadeia Alimentar , Serpentes , Comportamento Predatório
15.
Mov Ecol ; 11(1): 72, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919756

RESUMO

BACKGROUND: Kangaroo rats are small mammals that are among the most abundant vertebrates in many terrestrial ecosystems in Western North America and are considered both keystone species and ecosystem engineers, providing numerous linkages between other species as both consumers and resources. However, there are challenges to studying the behavior and activity of these species due to the difficulty of observing large numbers of individuals that are small, secretive, and nocturnal. Our goal was to develop an integrated approach of miniaturized animal-borne accelerometry and radiotelemetry to classify the cryptic behavior and activity cycles of kangaroo rats and test hypotheses of how their behavior is influenced by light cycles, moonlight, and weather. METHODS: We provide a proof-of-concept approach to effectively quantify behavioral patterns of small bodied (< 50 g), nocturnal, and terrestrial free-ranging mammals using large acceleration datasets by combining low-mass, miniaturized animal-borne accelerometers with radiotelemetry and advanced machine learning techniques. We developed a method of attachment and retrieval for deploying accelerometers, a non-disruptive method of gathering observational validation datasets for acceleration data on free-ranging nocturnal small mammals, and used these techniques on Merriam's kangaroo rats to analyze how behavioral patterns relate to abiotic factors. RESULTS: We found that Merriam's kangaroo rats are only active during the nighttime phases of the diel cycle and are particularly active during later light phases of the night (i.e., late night, morning twilight, and dawn). We found no reduction in activity or foraging associated with moonlight, indicating that kangaroo rats are actually more lunarphilic than lunarphobic. We also found that kangaroo rats increased foraging effort on more humid nights, most likely as a mechanism to avoid cutaneous water loss. CONCLUSIONS: Small mammals are often integral to ecosystem functionality, as many of these species are highly abundant ecosystem engineers driving linkages in energy flow and nutrient transfer across trophic levels. Our work represents the first continuous detailed quantitative description of fine-scale behavioral activity budgets in kangaroo rats, and lays out a general framework for how to use miniaturized biologging devices on small and nocturnal mammals to examine behavioral responses to environmental factors.

16.
Ecol Evol ; 13(11): e10683, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020675

RESUMO

Predators must contend with numerous challenges to successfully find and subjugate prey. Complex traits related to hunting are partially controlled by a large number of co-evolved genes, which may be disrupted in hybrids. Accordingly, research on the feeding ecology of animals in hybrid zones has shown that hybrids sometimes exhibit transgressive or novel behaviors, yet for many taxa, empirical studies of predation and diet across hybrid zones are lacking. We undertook the first such field study for a hybrid zone between two snake species, the Mojave rattlesnake (Crotalus scutulatus) and the prairie rattlesnake (Crotalus viridis). Specifically, we leveraged established field methods to quantify the hunting behaviors of animals, their prey communities, and the diet of individuals across the hybrid zone in southwestern New Mexico, USA. We found that, even though hybrids had significantly lower body condition indices than snakes from either parental group, hybrids were generally similar to non-hybrids in hunting behavior, prey encounter rates, and predatory attack and success. We also found that, compared to C. scutulatus, C. viridis was significantly more active while hunting at night and abandoned ambush sites earlier in the morning, and hybrids tended to be more viridis-like in this respect. Prey availability was similar across the study sites, including within the hybrid zone, with kangaroo rats (Dipodomys spp.) as the most common small mammal, both in habitat surveys and the frequency of encounters with hunting rattlesnakes. Analysis of prey remains in stomachs and feces also showed broad similarity in diets, with all snakes preying primarily on small mammals and secondarily on lizards. Taken together, our results suggest that the significantly lower body condition of hybrids does not appear to be driven by differences in their hunting behavior or diet and may instead relate to metabolic efficiency or other physiological traits we have not yet identified.

17.
Ecol Evol ; 13(8): e10339, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554395

RESUMO

Many animal species exist in fission-fusion societies, where the size and composition of conspecific groups change spatially and temporally. To help investigate such phenomena, social network analysis (SNA) has emerged as a powerful conceptual and analytical framework for assessing patterns of interconnectedness and quantifying group-level interactions. We leveraged behavioral observations via radiotelemetry and genotypic data from a long-term (>10 years) study on the pitviper Crotalus atrox (western diamondback rattlesnake) and used SNA to quantify the first robust demonstration of social network structures for any free-living snake. Group-level interactions among adults in this population resulted in structurally modular networks (i.e., distinct clusters of interacting individuals) for fidelis use of communal winter dens (denning network), mating behaviors (pairing network), and offspring production (parentage network). Although the structure of each network was similar, the size and composition of groups varied among them. Specifically, adults associated with moderately sized social groups at winter dens but often engaged in reproductive behaviors-both at and away from dens-with different and fewer partners. Additionally, modules formed by individuals in the pairing network were frequently different from those in the parentage network, likely due to multiple mating, long-term sperm storage by females, and resultant multiple paternity. Further evidence for fission-fusion dynamics exhibited by this population-interactions were rare when snakes were dispersing to and traversing their spring-summer home ranges (to which individuals show high fidelity), despite ample opportunities to associate with numerous conspecifics that had highly overlapping ranges. Taken together, we show that long-term datasets incorporating SNA with spatial and genetic information provide robust and unique insights to understanding the social structure of cryptic taxa that are understudied.

18.
Proc Biol Sci ; 279(1743): 3827-33, 2012 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-22787023

RESUMO

Many species approach, inspect and signal towards their predators. These behaviours are often interpreted as predator-deterrent signals--honest signals that indicate to a predator that continued hunting is likely to be futile. However, many of these putative predator-deterrent signals are given when no predator is present, and it remains unclear if and why such signals deter predators. We examined the effects of one such signal, the tail-flag display of California ground squirrels, which is frequently given both during and outside direct encounters with northern Pacific rattlesnakes. We video-recorded and quantified the ambush foraging responses of rattlesnakes to tail-flagging displays from ground squirrels. We found that tail-flagging deterred snakes from striking squirrels, most likely by advertising squirrel vigilance (i.e. readiness to dodge a snake strike). We also found that tail-flagging by adult squirrels increased the likelihood that snakes would leave their ambush site, apparently by elevating the vigilance of nearby squirrels which reduces the profitability of the ambush site. Our results provide some of the first empirical evidence of the mechanisms by which a prey display, although frequently given in the absence of a predator, may still deter predators during encounters.


Assuntos
Comunicação Animal , Crotalus/fisiologia , Comportamento Predatório , Sciuridae/fisiologia , Animais , California , Feminino , Masculino , Modelos de Riscos Proporcionais , Cauda , Telemetria , Gravação de Videoteipe
19.
Biol Lett ; 8(4): 523-5, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22357940

RESUMO

Research on social behaviour has largely concentrated on birds and mammals in visually active, cooperatively breeding groups (although such systems are relatively rare) and focused much less on species that rarely interact other than for mating and parental care. We used microsatellite markers to characterize relatedness among aggregations of timber rattlesnakes (Crotalus horridus), a putatively solitary reptile that relies heavily on chemical cues, and found that juveniles and pregnant females preferentially aggregate with kin under certain conditions. The ability to recognize kin and enhance indirect fitness thus might be far more widespread than implied by studies of animals whose behaviour is primarily visually and/or acoustically mediated, and we predict that molecular markers will reveal many additional examples of 'cryptic' sociality.


Assuntos
Comportamento Animal , Crotalus/fisiologia , Reconhecimento Psicológico/fisiologia , Comportamento Social , Animais , Crotalus/genética , Sinais (Psicologia) , Feminino , Aptidão Genética , Masculino , Comportamento Materno/psicologia , Repetições de Microssatélites , Gravidez , Reprodução/genética , Estações do Ano , Especificidade da Espécie
20.
Integr Comp Biol ; 61(2): 442-454, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940620

RESUMO

Tails are widespread in the animal world and play important roles in locomotor tasks, such as propulsion, maneuvering, stability, and manipulation of objects. Kangaroo rats, bipedal hopping rodents, use their tail for balancing during hopping, but the role of their tail during the vertical evasive escape jumps they perform when attacked by predators is yet to be determined. Because we observed kangaroo rats swinging their tails around their bodies while airborne following escape jumps, we hypothesized that kangaroo rats use their tails to not only stabilize their bodies while airborne, but also to perform aerial re-orientations. We collected video data from free-ranging desert kangaroo rats (Dipodomys deserti) performing escape jumps in response to a simulated predator attack and analyzed the rotation of their bodies and tails in the yaw plane (about the vertical-axis). Kangaroo rat escape responses were highly variable. The magnitude of body re-orientation in yaw was independent of jump height, jump distance, and aerial time. Kangaroo rats exhibited a stepwise re-orientation while airborne, in which slower turning periods corresponded with the tail center of mass being aligned close to the vertical rotation axis of the body. To examine the effect of tail motion on body re-orientation during a jump, we compared average rate of change in angular momentum. Rate of change in tail angular momentum was nearly proportional to that of the body, indicating that the tail reorients the body in the yaw plane during aerial escape leaps by kangaroo rats. Although kangaroo rats make dynamic 3D movements during their escape leaps, our data suggest that kangaroo rats use their tails to control orientation in the yaw plane. Additionally, we show that kangaroo rats rarely use their tail length at full potential in yaw, suggesting the importance of tail movement through multiple planes simultaneously.


Assuntos
Dipodomys , Cauda , Animais , Fenômenos Biomecânicos , Dipodomys/fisiologia , Cauda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA