RESUMO
Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.
RESUMO
BACKGROUND: High priority efforts are underway to support the development of novel mucosal COVID-19 vaccines, such as the US Government's Project NextGen and the Center for Epidemic Preparedness Innovations' goal to respond to the next pandemic with a new vaccine in 100 days. However, there is limited consensus about the complementary role of mucosal immunity in disease progression and how to evaluate immunogenicity of mucosal vaccines. This study investigated the role of oral mucosal antibody responses in viral clearance and COVID-19 symptom duration. METHODS: Participants with PCR-confirmed SARS-CoV-2 infection provided oral fluid for testing with SARS-CoV-2 antibody multiplex assays, nasal swabs for RT-PCR and symptom information at up to eight follow-ups from April 2020 to February 2022. RESULTS: High and moderate oral fluid anti-spike (S) secretory IgA (SIgA) post infection was associated with significantly faster viral clearance and symptom resolution across age groups with effect sizes equivalent to having COVID-19 vaccine immunity at the time of infection. Those with high and moderate anti-S SIgA cleared the virus 14 days (95% CI: 10-18) and recovered 9-10 days (95% CI: 6-14) earlier. Delayed and higher anti-S IgG was associated with significantly longer time to clearance and recovery. Experiencing symptoms longer than four weeks was associated with lower anti-RBD SIgA 15-30 days after infection onset (p<0.001). CONCLUSION: Robust mucosal SIgA early post infection appears to support faster clearance of SARS-CoV-2 and recovery from COVID-19 symptoms. This research underscores the importance of harmonizing mucosal immune response assays to evaluate new mucosal vaccines.
RESUMO
BACKGROUND: The failing heart is traditionally described as metabolically inflexible and oxygen starved, causing energetic deficit and contractile dysfunction. Current metabolic modulator therapies aim to increase glucose oxidation to increase oxygen efficiency of adenosine triphosphate production, with mixed results. METHODS: To investigate metabolic flexibility and oxygen delivery in the failing heart, 20 patients with nonischemic heart failure with reduced ejection fraction (left ventricular ejection fraction 34.9±9.1) underwent separate infusions of insulin+glucose infusion (I+G) or Intralipid infusion. We used cardiovascular magnetic resonance to assess cardiac function and measured energetics using phosphorus-31 magnetic resonance spectroscopy. To investigate the effects of these infusions on cardiac substrate use, function, and myocardial oxygen uptake (MVo2), invasive arteriovenous sampling and pressure-volume loops were performed (n=9). RESULTS: At rest, we found that the heart had considerable metabolic flexibility. During I+G, cardiac glucose uptake and oxidation were predominant (70±14% total energy substrate for adenosine triphosphate production versus 17±16% for Intralipid; P=0.002); however, no change in cardiac function was seen relative to basal conditions. In contrast, during Intralipid infusion, cardiac long-chain fatty acid (LCFA) delivery, uptake, LCFA acylcarnitine production, and fatty acid oxidation were all increased (LCFA 73±17% of total substrate versus 19±26% total during I+G; P=0.009). Myocardial energetics were better with Intralipid compared with I+G (phosphocreatine/adenosine triphosphate 1.86±0.25 versus 2.01±0.33; P=0.02), and systolic and diastolic function were improved (LVEF 34.9±9.1 baseline, 33.7±8.2 I+G, 39.9±9.3 Intralipid; P<0.001). During increased cardiac workload, LCFA uptake and oxidation were again increased during both infusions. There was no evidence of systolic dysfunction or lactate efflux at 65% maximal heart rate, suggesting that a metabolic switch to fat did not cause clinically meaningful ischemic metabolism. CONCLUSIONS: Our findings show that even in nonischemic heart failure with reduced ejection fraction with severely impaired systolic function, significant cardiac metabolic flexibility is retained, including the ability to alter substrate use to match both arterial supply and changes in workload. Increasing LCFA uptake and oxidation is associated with improved myocardial energetics and contractility. Together, these findings challenge aspects of the rationale underlying existing metabolic therapies for heart failure and suggest that strategies promoting fatty acid oxidation may form the basis for future therapies.
Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico , Metabolismo Energético , Função Ventricular Esquerda , Miocárdio/metabolismo , Insuficiência Cardíaca/patologia , Trifosfato de Adenosina/metabolismo , Disfunção Ventricular Esquerda/patologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Oxigênio/metabolismoRESUMO
Deuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non-invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium-labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase-encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non-Cartesian spatial-spectral sampling schemes for whole-brain 2H FID-MR Spectroscopic Imaging to assess time-resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions. Results were compared with lower-resolution DMI maps, conventionally acquired within the same session. Six healthy volunteers (4 m/2 f) were scanned for ~90 min after administration of 0.8 g/kg oral [6,6']-2H glucose. Time-resolved whole brain 2H FID-DMI maps of glucose (Glc) and glutamate + glutamine (Glx) were acquired with 0.75 and 2 mL isotropic spatial resolution using density-weighted concentric ring trajectory (CRT) and conventional phase encoding (PE) readout, respectively, at 7 T. To minimize the effect of decreased signal-to-noise ratios associated with smaller voxels, low-rank denoising of the spatiotemporal data was performed during reconstruction. Sixty-three minutes after oral tracer uptake three-dimensional (3D) CRT-DMI maps featured 19% higher (p = .006) deuterium-labeled Glc concentrations in GM (1.98 ± 0.43 mM) compared with WM (1.66 ± 0.36 mM) dominated regions, across all volunteers. Similarly, 48% higher (p = .01) 2H-Glx concentrations were observed in GM (2.21 ± 0.44 mM) compared with WM (1.49 ± 0.20 mM). Low-resolution PE-DMI maps acquired 70 min after tracer uptake featured smaller regional differences between GM- and WM-dominated areas for 2H-Glc concentrations with 2.00 ± 0.35 mM and 1.71 ± 0.31 mM, respectively (+16%; p = .045), while no regional differences were observed for 2H-Glx concentrations. In this study, we successfully implemented 3D FID-MRSI with fast CRT encoding for dynamic whole-brain DMI at 7 T with 2.5-fold increased spatial resolution compared with conventional whole-brain phase encoded (PE) DMI to visualize regional metabolic differences. The faster metabolic activity represented by 48% higher Glx concentrations was observed in GM- compared with WM-dominated regions, which could not be reproduced using whole-brain DMI with the low spatial resolution protocol. Improved assessment of regional pathologic alterations using a fully non-invasive imaging method is of high clinical relevance and could push DMI one step toward clinical applications.
Assuntos
Encéfalo , Deutério , Glucose , Humanos , Glucose/metabolismo , Adulto , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Espectroscopia de Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismoRESUMO
PURPOSE: Dynamic (2D) MRS is a collection of techniques where acquisitions of spectra are repeated under varying experimental or physiological conditions. Dynamic MRS comprises a rich set of contrasts, including diffusion-weighted, relaxation-weighted, functional, edited, or hyperpolarized spectroscopy, leading to quantitative insights into multiple physiological or microstructural processes. Conventional approaches to dynamic MRS analysis ignore the shared information between spectra, and instead proceed by independently fitting noisy individual spectra before modeling temporal changes in the parameters. Here, we propose a universal dynamic MRS toolbox which allows simultaneous fitting of dynamic spectra of arbitrary type. METHODS: A simple user-interface allows information to be shared and precisely modeled across spectra to make inferences on both spectral and dynamic processes. We demonstrate and thoroughly evaluate our approach in three types of dynamic MRS techniques. Simulations of functional and edited MRS are used to demonstrate the advantages of dynamic fitting. RESULTS: Analysis of synthetic functional 1H-MRS data shows a marked decrease in parameter uncertainty as predicted by prior work. Analysis with our tool replicates the results of two previously published studies using the original in vivo functional and diffusion-weighted data. Finally, joint spectral fitting with diffusion orientation models is demonstrated in synthetic data. CONCLUSION: A toolbox for generalized and universal fitting of dynamic, interrelated MR spectra has been released and validated. The toolbox is shared as a fully open-source software with comprehensive documentation, example data, and tutorials.
Assuntos
Meios de Contraste , Software , Espectroscopia de Ressonância Magnética/métodos , Difusão , IncertezaRESUMO
Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.
Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Consenso , Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Difusão , Imagem de Difusão por Ressonância Magnética/métodosRESUMO
Motor adaptation is crucial for performing accurate movements in a changing environment and relies on the cerebellum. Although cerebellar involvement has been well characterized, the neurochemical changes in the cerebellum underpinning human motor adaptation remain unknown. We used a novel magnetic resonance spectroscopic imaging (MRSI) technique to measure changes in the inhibitory neurotransmitter GABA in the human cerebellum during visuomotor adaptation. Participants (n = 17, six female) used their right hand to adapt to a rotated cursor in the scanner, compared with a control task requiring no adaptation. We spatially resolved adaptation-driven GABA changes at the cerebellar nuclei and cerebellar cortex in the left and the right cerebellar hemisphere independently and found that simple right-hand movements increase GABA in the right cerebellar nuclei and decreases GABA in the left. When isolating adaptation-driven GABA changes, we found that GABA in the left cerebellar nuclei and the right cerebellar nuclei diverged, although GABA change from baseline at the right cerebellar nuclei was not different from zero at the group level. Early adaptation-driven GABA fluctuations in the right cerebellar nuclei correlated with adaptation performance. Participants showing greater GABA decrease adapted better, suggesting early GABA change is behaviorally relevant. Early GABA change also correlated with functional connectivity change in a cerebellar network. Participants showing greater decreases in GABA showed greater strength increases in cerebellar network connectivity. Results were specific to GABA, to adaptation, and to the cerebellar network. This study provides first evidence for plastic changes in cerebellar neurochemistry during motor adaptation. Characterizing these naturally occurring neurochemical changes may provide a basis for developing therapeutic interventions to facilitate human motor adaptation.SIGNIFICANCE STATEMENT Despite motor adaptation being fundamental to maintaining accurate movements, its neurochemical basis remains poorly understood, perhaps because measuring neurochemicals in the human cerebellum is technically challenging. Using a novel magnetic resonance spectroscopic imaging method, this study provides evidence for GABA changes in the left compared with the right cerebellar nuclei driven by both simple movement and motor adaptation. Although right cerebellar GABA changes were not significantly different from zero at the group level, the adaptation-driven GABA fluctuations in the right cerebellar nuclei correlated with adaptation performance and with functional connectivity change in a cerebellar network. These results show the first evidence for plastic changes in cerebellar neurochemistry during a cerebellar learning task. This provides the basis for developing therapeutic interventions that facilitate these naturally occurring changes to amplify cerebellar-dependent learning.
Assuntos
Cerebelo , Desempenho Psicomotor , Humanos , Feminino , Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Ácido gama-AminobutíricoRESUMO
BACKGROUND: Damage to the primary visual cortex following an occipital stroke causes loss of conscious vision in the contralateral hemifield. Yet, some patients retain the ability to detect moving visual stimuli within their blind field. The present study asked whether such individual differences in blind field perception following loss of primary visual cortex could be explained by the concentration of neurotransmitters γ-aminobutyric acid (GABA) and glutamate or activity of the visual motion processing, human middle temporal complex (hMT+). METHODS: We used magnetic resonance imaging in 19 patients with chronic occipital stroke to measure the concentration of neurotransmitters GABA and glutamate (proton magnetic resonance spectroscopy) and functional activity in hMT+ (functional magnetic resonance imaging). We also tested each participant on a 2-interval forced choice detection task using high-contrast, moving Gabor patches. We then measured and assessed the strength of relationships between participants' residual vision in their blind field and in vivo neurotransmitter concentrations, as well as visually evoked functional magnetic resonance imaging activity in their hMT+. Levels of GABA and glutamate were also measured in a sensorimotor region, which served as a control. RESULTS: Magnetic resonance spectroscopy-derived GABA and glutamate concentrations in hMT+ (but not sensorimotor cortex) strongly predicted blind-field visual detection abilities. Performance was inversely related to levels of both inhibitory and excitatory neurotransmitters in hMT+ but, surprisingly, did not correlate with visually evoked blood oxygenation level-dependent signal change in this motion-sensitive region. CONCLUSIONS: Levels of GABA and glutamate in hMT+ appear to provide superior information about motion detection capabilities inside perimetrically defined blind fields compared to blood oxygenation level-dependent signal changes-in essence, serving as biomarkers for the quality of residual visual processing in the blind-field. Whether they also reflect a potential for successful rehabilitation of visual function remains to be determined.
Assuntos
Acidente Vascular Cerebral , Córtex Visual , Humanos , Ácido Glutâmico , Individualidade , Córtex Visual/diagnóstico por imagem , Estimulação Luminosa/métodos , Imageamento por Ressonância Magnética/métodos , Ácido gama-Aminobutírico , Acidente Vascular Cerebral/diagnóstico por imagemRESUMO
Proton-Magnetic Resonance Spectroscopy (MRS) is a non-invasive brain imaging technique used to measure the concentration of different neurochemicals. "Single-voxel" MRS data is typically acquired across several minutes, before individual transients are averaged through time to give a measurement of neurochemical concentrations. However, this approach is not sensitive to more rapid temporal dynamics of neurochemicals, including those that reflect functional changes in neural computation relevant to perception, cognition, motor control and ultimately behaviour. In this review we discuss recent advances in functional MRS (fMRS) that now allow us to obtain event-related measures of neurochemicals. Event-related fMRS involves presenting different experimental conditions as a series of trials that are intermixed. Critically, this approach allows spectra to be acquired at a time resolution in the order of seconds. Here we provide a comprehensive user guide for event-related task designs, choice of MRS sequence, analysis pipelines, and appropriate interpretation of event-related fMRS data. We raise various technical considerations by examining protocols used to quantify dynamic changes in GABA, the primary inhibitory neurotransmitter in the brain. Overall, we propose that although more data is needed, event-related fMRS can be used to measure dynamic changes in neurochemicals at a temporal resolution relevant to computations that support human cognition and behaviour.
Assuntos
Encéfalo , Cognição , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Ácido Glutâmico/análiseRESUMO
Neutralizing antibody (nAb) responses are attenuated in solid organ transplant recipients (SOTRs) despite severe acute respiratory syndrome-coronavirus-2 vaccination. Preexposure prophylaxis (PrEP) with the antibody combination tixagevimab and cilgavimab (T+C) might augment immunoprotection, yet in vitro activity and durability against Omicron sublineages BA.4/5 in fully vaccinated SOTRs have not been delineated. Vaccinated SOTRs, who received 300 + 300 mg T+C (ie, full dose), within a prospective observational cohort submitted pre and postinjection samples between January 31, 2022, and July 6, 2022. The peak live virus nAb was measured against Omicron sublineages (BA.1, BA.2, BA.2.12.1, and BA.4), and surrogate neutralization (percent inhibition of angiotensin-converting enzyme 2 receptor binding to full length spike, validated vs live virus) was measured out to 3 months against sublineages, including BA.4/5. With live virus testing, the proportion of SOTRs with any nAb increased against BA.2 (47%-100%; P < .01), BA.2.12.1 (27%-80%; P < .01), and BA.4 (27%-93%; P < .01), but not against BA.1 (40%-33%; P = .6). The proportion of SOTRs with surrogate neutralizing inhibition against BA.5, however, fell to 15% by 3 months. Two participants developed mild severe acute respiratory syndrome-coronavirus-2 infection during follow-up. The majority of fully vaccinated SOTRs receiving T+C PrEP achieved BA.4/5 neutralization, yet nAb activity commonly waned by 3 months postinjection. It is critical to assess the optimal dose and interval of T+C PrEP to maximize protection in a changing variant climate.
Assuntos
COVID-19 , Transplantados , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
Kidney transplant recipients (KTRs) show poorer response to SARS-CoV-2 mRNA vaccination, yet response patterns and mechanistic drivers following third doses are ill-defined. We administered third monovalent mRNA vaccines to n = 81 KTRs with negative or low-titer anti-receptor binding domain (RBD) antibody (n = 39 anti-RBDNEG; n = 42 anti-RBDLO), compared with healthy controls (HCs, n = 19), measuring anti-RBD, Omicron neutralization, spike-specific CD8+%, and SARS-CoV-2-reactive T cell receptor (TCR) repertoires. By day 30, 44% anti-RBDNEG remained seronegative; 5% KTRs developed BA.5 neutralization (vs 68% HCs, P < .001). Day 30 spike-specific CD8+% was negative in 91% KTRs (vs 20% HCs; P = .07), without correlation to anti-RBD (rs = 0.17). Day 30 SARS-CoV-2-reactive TCR repertoires were detected in 52% KTRs vs 74% HCs (P = .11). Spike-specific CD4+ TCR expansion was similar between KTRs and HCs, yet KTR CD8+ TCR depth was 7.6-fold lower (P = .001). Global negative response was seen in 7% KTRs, associated with high-dose MMF (P = .037); 44% showed global positive response. Of the KTRs, 16% experienced breakthrough infections, with 2 hospitalizations; prebreakthrough variant neutralization was poor. Absent neutralizing and CD8+ responses in KTRs indicate vulnerability to COVID-19 despite 3-dose mRNA vaccination. Lack of neutralization despite CD4+ expansion suggests B cell dysfunction and/or ineffective T cell help. Development of more effective KTR vaccine strategies is critical. (NCT04969263).
Assuntos
COVID-19 , Transplante de Rim , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Transplante de Rim/efeitos adversos , RNA Mensageiro/genética , Transplantados , Vacinas de mRNA , Receptores de Antígenos de Linfócitos T , Anticorpos AntiviraisRESUMO
A three-dimensional (3D), density-weighted, concentric rings trajectory (CRT) magnetic resonance spectroscopic imaging (MRSI) sequence is implemented for cardiac phosphorus (31 P)-MRS at 7 T. The point-by-point k-space sampling of traditional phase-encoded chemical shift imaging (CSI) sequences severely restricts the minimum scan time at higher spatial resolutions. Our proposed CRT sequence implements a stack of concentric rings, with a variable number of rings and planes spaced to optimise the density of k-space weighting. This creates flexibility in acquisition time, allowing acquisitions substantially faster than traditional phase-encoded CSI sequences, while retaining high signal-to-noise ratio (SNR). We first characterise the SNR and point-spread function of the CRT sequence in phantoms. We then evaluate it at five different acquisition times and spatial resolutions in the hearts of five healthy participants at 7 T. These different sequence durations are compared with existing published 3D acquisition-weighted CSI sequences with matched acquisition times and spatial resolutions. To minimise the effect of noise on the short acquisitions, low-rank denoising of the spatiotemporal data was also performed after acquisition. The proposed sequence measures 3D localised phosphocreatine to adenosine triphosphate (PCr/ATP) ratios of the human myocardium in 2.5 min, 2.6 times faster than the minimum scan time for acquisition-weighted phase-encoded CSI. Alternatively, in the same scan time, a 1.7-times smaller nominal voxel volume can be achieved. Low-rank denoising reduced the variance of measured PCr/ATP ratios by 11% across all protocols. The faster acquisitions permitted by 7-T CRT 31 P-MRSI could make cardiac stress protocols or creatine kinase rate measurements (which involve repeated scans) more tolerable for patients without sacrificing spatial resolution.
Assuntos
Imageamento por Ressonância Magnética , Fósforo , Humanos , Espectroscopia de Ressonância MagnéticaRESUMO
In this retrospective analysis, we explored the correlation between measured average glucose (mAG) and A1C-estimated average glucose (eAG) in hospitalized patients with diabetes and identified factors associated with discordant mAG and eAG at the transition from home to hospital. Having mAG lower than eAG was associated with Black race, other race, increasing length of stay, community hospital setting, surgery, fever, metformin use, certain inpatient diets, home antihyperglycemic treatment, and coded type 1 or type 2 diabetes. Having mAG higher than eAG was associated with certain discharge services (e.g., intensive care unit), higher BMI, hypertension, tachycardia, higher albumin, higher potassium, anemia, inpatient glucocorticoid use, and treatment with home insulin, secretagogues, and glucocorticoids. These factors should be considered when using patients' A1C as an indicator of outpatient glycemic control to determine the inpatient antihyperglycemic regimens.
RESUMO
Magnetic resonance spectroscopy (MRS) can non-invasively measure levels of endogenous metabolites in living tissue and is of great interest to neuroscience and clinical research. To this day, MRS data analysis workflows differ substantially between groups, frequently requiring many manual steps to be performed on individual datasets, e.g., data renaming/sorting, manual execution of analysis scripts, and manual assessment of success/failure. Manual analysis practices are a substantial barrier to wider uptake of MRS. They also increase the likelihood of human error and prevent deployment of MRS at large scale. Here, we demonstrate an end-to-end workflow for fully automated data uptake, processing, and quality review.The proposed continuous automated MRS analysis workflow integrates several recent innovations in MRS data and file storage conventions. They are efficiently deployed by a directory monitoring service that automatically triggers the following steps upon arrival of a new raw MRS dataset in a project folder: (1) conversion from proprietary manufacturer file formats into the universal format NIfTI-MRS; (2) consistent file system organization according to the data accumulation logic standard BIDS-MRS; (3) executing a command-line executable of our open-source end-to-end analysis software Osprey; (4) e-mail delivery of a quality control summary report for all analysis steps.The automated architecture successfully completed for a demonstration dataset. The only manual step required was to copy a raw data folder into a monitored directory.Continuous automated analysis of MRS data can reduce the burden of manual data analysis and quality control, particularly for non-expert users and multi-center or large-scale studies and offers considerable economic advantages.
Assuntos
Software , Humanos , Fluxo de Trabalho , Espectroscopia de Ressonância Magnética/métodos , ProbabilidadeRESUMO
BACKGROUND: The HIV Prevention Trials Network (HPTN) 074 study evaluated an integrated human immunodeficiency virus (HIV) treatment and prevention strategy among persons who inject drugs (PWID) in Indonesia, Ukraine, and Vietnam. We previously detected multiple HIV infection in 3 of 7 (43%) of seroconverters with 3-8 HIV strains per person. In this report, we analyzed multiple HIV infection and HIV superinfection (SI) in the HPTN 074 cohort. METHODS: We analyzed samples from 70 participants in Indonesia and Ukraine who had viral load >400â copies/mL at enrollment and the final study visit (median follow-up, 2.5â years). HIV was characterized with Sanger sequencing, next-generation sequencing, and phylogenetic analysis. Additional methods were used to characterize a rare case of triple-variant SI. RESULTS: At enrollment, multiple infection was detected in only 3 of 58 (5.2%) participants with env sequence data. SI was detected in only 1 of 70 participants over 172.3 person-years of follow-up (SI incidence, 0.58/100 person-years [95% confidence interval, .015-3.2]). The SI case involved acquisition of 3 HIV strains with rapid selection of a strain with a single pol region cluster. CONCLUSIONS: These data from a large cohort of PWID suggest that intrahost viral selection and other factors may lead to underestimation of the frequency of multiple HIV infection and SI events.
Assuntos
Usuários de Drogas , Infecções por HIV , Abuso de Substâncias por Via Intravenosa , Superinfecção , Humanos , HIV , Abuso de Substâncias por Via Intravenosa/complicações , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Infecções por HIV/tratamento farmacológico , Superinfecção/epidemiologia , Filogenia , Ucrânia/epidemiologia , Indonésia/epidemiologiaRESUMO
BACKGROUND: Organ transplantation from donors with human immunodeficiency virus (HIV) to recipients with HIV (HIV D+/R+) presents risks of donor-derived infections. Understanding clinical, immunologic, and virologic characteristics of HIV-positive donors is critical for safety. METHODS: We performed a prospective study of donors with HIV-positive and HIV false-positive (FP) test results within the HIV Organ Policy Equity (HOPE) Act in Action studies of HIV D+/R+ transplantation (ClinicalTrials.gov NCT02602262, NCT03500315, and NCT03734393). We compared clinical characteristics in HIV-positive versus FP donors. We measured CD4 T cells, HIV viral load (VL), drug resistance mutations (DRMs), coreceptor tropism, and serum antiretroviral therapy (ART) detection, using mass spectrometry in HIV-positive donors. RESULTS: Between March 2016 and March 2020, 92 donors (58 HIV positive, 34 FP), representing 98.9% of all US HOPE donors during this period, donated 177 organs (131 kidneys and 46 livers). Each year the number of donors increased. The prevalence of hepatitis B (16% vs 0%), syphilis (16% vs 0%), and cytomegalovirus (CMV; 91% vs 58%) was higher in HIV-positive versus FP donors; the prevalences of hepatitis C viremia were similar (2% vs 6%). Most HIV-positive donors (71%) had a known HIV diagnosis, of whom 90% were prescribed ART and 68% had a VL <400 copies/mL. The median CD4 T-cell count (interquartile range) was 194/µL (77-331/µL), and the median CD4 T-cell percentage was 27.0% (16.8%-36.1%). Major HIV DRMs were detected in 42%, including nonnucleoside reverse-transcriptase inhibitors (33%), integrase strand transfer inhibitors (4%), and multiclass (13%). Serum ART was detected in 46% and matched ART by history. CONCLUSION: The use of HIV-positive donor organs is increasing. HIV DRMs are common, yet resistance that would compromise integrase strand transfer inhibitor-based regimens is rare, which is reassuring regarding safety.
Assuntos
Infecções por HIV , Soropositividade para HIV , Antirretrovirais/uso terapêutico , HIV , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Soropositividade para HIV/tratamento farmacológico , Humanos , Integrases , Estudos Prospectivos , Doadores de Tecidos , Estados Unidos/epidemiologia , Carga ViralRESUMO
Heterologous vaccination ("mixing platforms") for the third (D3) dose of SARS-CoV-2 vaccine is a potential strategy to improve antibody responses in solid organ transplant recipients (SOTRs), but data are mixed regarding potential differential immunogenicity. We assessed for differences in immunogenicity and tolerability of homologous (BNT162b2 or mRNA-1273; D3-mRNA) versus heterologous (Ad.26.COV2.S; D3-JJ) D3 among 377 SARS-CoV-2-infection naïve SOTRs who remained seronegative after two mRNA vaccines. We measured anti-spike titers and used weighted Poisson regression to evaluate seroconversion and development of high-titers, comparing D3-JJ to D3-mRNA, at 1-, 3-, and 6 month post-D3. 1-month post-D3, seroconversion (63% vs. 52%, p = .3) and development of high-titers (29% vs. 25%, p = .7) were comparable between D3-JJ and D3-mRNA recipients. 3 month post-D3, D3-JJ recipients were 1.4-fold more likely to seroconvert (80% vs. 57%, weighted incidence-rate-ratio: wIRR = 1.10 1.401.77 , p = .006) but not more likely to develop high-titers (27% vs. 22%, wIRR = 0.44 0.921.93 , p = .8). 6 month post-D3, D3-JJ recipients were 1.41-fold more likely to seroconvert (88% vs. 59%, wIRR = 1.04 1.411.93 , p = .029) and 2.63-fold more likely to develop high-titers (59% vs. 21%, wIRR = 1.38 2.635.00 , p = .003). There was no differential signal in alloimmune events or reactogenicity between platforms. SOTRs without antibody response after two mRNA vaccines may derive benefit from heterologous Ad.26.COV2.S D3.
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , COVID-19 , Vacinas contra Influenza , Transplante de Órgãos , Vacina de mRNA-1273 contra 2019-nCoV/efeitos adversos , Anticorpos Antivirais , Vacina BNT162/efeitos adversos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Transplante de Órgãos/efeitos adversos , RNA Mensageiro/genética , SARS-CoV-2 , Transplantados , VacinaçãoRESUMO
PURPOSE: Low-rank denoising of MRSI data results in an apparent increase in spectral SNR. However, it is not clear if this translates to a lower uncertainty in metabolite concentrations after spectroscopic fitting. Estimation of the true uncertainty after denoising is desirable for downstream analysis in spectroscopy. In this work, the uncertainty reduction from low-rank denoising methods based on spatiotemporal separability and linear predictability in MRSI are assessed. A new method for estimating metabolite concentration uncertainty after denoising is proposed. Automatic rank threshold selection methods are also assessed in simulated low SNR regimes. METHODS: Assessment of denoising methods is conducted using Monte Carlo simulation of proton MRSI data and by reproducibility of repeated in vivo acquisitions in 5 subjects. RESULTS: In simulated and in vivo data, spatiotemporal based denoising is shown to reduce the concentration uncertainty, but linear prediction denoising increases uncertainty. Uncertainty estimates provided by fitting algorithms after denoising consistently underestimate actual metabolite uncertainty. However, the proposed uncertainty estimation, based on an analytical expression for entry-wise variance after denoising, is more accurate. It is also shown automated rank threshold selection using Marchenko-Pastur distribution can bias the data in low SNR conditions. An alternative soft-thresholding function is proposed. CONCLUSION: Low-rank denoising methods based on spatiotemporal separability do reduce uncertainty in MRS(I) data. However, thorough assessment is needed as assessment by SNR measured from residual baseline noise is insufficient given the presence of non-uniform variance. It is also important to select the right rank thresholding method in low SNR cases.
Assuntos
Algoritmos , Encéfalo , Encéfalo/diagnóstico por imagem , Humanos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , IncertezaRESUMO
PURPOSE: Multiple data formats in the MRS community currently hinder data sharing and integration. NIfTI-MRS is proposed as a standard spectroscopy data format, implemented as an extension to the Neuroimaging informatics technology initiative (NIfTI) format. This standardized format can facilitate data sharing and algorithm development as well as ease integration of MRS analysis alongside other imaging modalities. METHODS: A file format using the NIfTI header extension framework incorporates essential spectroscopic metadata and additional encoding dimensions. A detailed description of the specification is provided. An open-source command-line conversion program is implemented to convert single-voxel and spectroscopic imaging data to NIfTI-MRS. Visualization of data in NIfTI-MRS is provided by development of a dedicated plugin for FSLeyes, the FMRIB Software Library (FSL) image viewer. RESULTS: Online documentation and 10 example datasets in the proposed format are provided. Code examples of NIfTI-MRS readers are implemented in common programming languages. Conversion software, spec2nii, currently converts 14 formats where data is stored in image-space to NIfTI-MRS, including Digital Imaging and Communications in Medicine (DICOM) and vendor proprietary formats. CONCLUSION: NIfTI-MRS aims to solve issues arising from multiple data formats being used in the MRS community. Through a single conversion point, processing and analysis of MRS data are simplified, thereby lowering the barrier to use of MRS. Furthermore, it can serve as the basis for open data sharing, collaboration, and interoperability of analysis programs. Greater standardization and harmonization become possible. By aligning with the dominant format in neuroimaging, NIfTI-MRS enables the use of mature tools present in the imaging community, demonstrated in this work by using a dedicated imaging tool, FSLeyes, for visualization.
Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Informática , Espectroscopia de Ressonância Magnética , Software , TecnologiaRESUMO
RATIONALE & OBJECTIVE: Acute kidney injury (AKI) is common in patients with coronavirus disease 2019 (COVID-19) and associated with poor outcomes. Urinary biomarkers have been associated with adverse kidney outcomes in other settings and may provide additional prognostic information in patients with COVID-19. We investigated the association between urinary biomarkers and adverse kidney outcomes among patients hospitalized with COVID-19. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: Patients hospitalized with COVID-19 (n=153) at 2 academic medical centers between April and June 2020. EXPOSURE: 19 urinary biomarkers of injury, inflammation, and repair. OUTCOME: Composite of KDIGO (Kidney Disease: Improving Global Outcomes) stage 3 AKI, requirement for dialysis, or death within 60 days of hospital admission. We also compared various kidney biomarker levels in the setting of COVID-19 versus other common AKI settings. ANALYTICAL APPROACH: Time-varying Cox proportional hazards regression to associate biomarker level with composite outcome. RESULTS: Out of 153 patients, 24 (15.7%) experienced the primary outcome. Twofold higher levels of neutrophil gelatinase-associated lipocalin (NGAL) (HR, 1.34 [95% CI, 1.14-1.57]), monocyte chemoattractant protein (MCP-1) (HR, 1.42 [95% CI, 1.09-1.84]), and kidney injury molecule 1 (KIM-1) (HR, 2.03 [95% CI, 1.38-2.99]) were associated with highest risk of sustaining primary composite outcome. Higher epidermal growth factor (EGF) levels were associated with a lower risk of the primary outcome (HR, 0.61 [95% CI, 0.47-0.79]). Individual biomarkers provided moderate discrimination and biomarker combinations improved discrimination for the primary outcome. The degree of kidney injury by biomarker level in COVID-19 was comparable to other settings of clinical AKI. There was evidence of subclinical AKI in COVID-19 patients based on elevated injury biomarker level in patients without clinical AKI defined by serum creatinine. LIMITATIONS: Small sample size with low number of composite outcome events. CONCLUSIONS: Urinary biomarkers are associated with adverse kidney outcomes in patients hospitalized with COVID-19 and may provide valuable information to monitor kidney disease progression and recovery.