Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 91(7): 1444-1457, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396865

RESUMO

Urbanization, and the drastic loss of habitat it entails, poses a major threat to global avian biodiversity. Ecological restoration of urban forests is therefore increasingly vital for native bird conservation, but control of invasive predators may also be needed to sustain native bird populations in cities where species invasions have been particularly severe. We evaluated restoration success by investigating changes in native bird communities along a restoration chronosequence of 25 restored urban forests representing 72 years of forest development, which we compared to two target reference systems and a control system. We hypothesized that total species richness and relative abundance of native forest birds would increase with the age of restoration planting. We further hypothesized that relative abundance of rats, possums and cats would negatively impact native birds, while amount of native forest in the surrounding landscape would have a positive effect. We used structural equation modelling (SEM) to investigate the relative influence of forest structure (complexity index, tree height, canopy openness, basal area, species richness and density), landscape attributes (patch area, perimeter length, landscape composition within three buffer zones, distance to the nearest road and water source) and invasive mammalian predator indices of relative abundance on total species richness and relative abundance of native forest birds. Species richness increased with age of restoration planting, with community composition progressing towards that found in target reference systems. SEM revealed that years restored was a direct driver of bird species richness but an indirect driver of abundance, which was directly driven by canopy openness. Contrary to our predictions, invasive mammals had no significant effect on native bird species richness or abundance. Our results demonstrate that provision and improvement of habitat quantity and quality through restoration is the vital first step to re-establishing native forest bird communities in cities.


Assuntos
Conservação dos Recursos Naturais , Florestas , Animais , Biodiversidade , Aves , Conservação dos Recursos Naturais/métodos , Ecossistema , Mamíferos , Ratos , Árvores
2.
Ecol Appl ; 27(4): 1268-1279, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28182314

RESUMO

Restoring forest structure and composition is an important component of urban land management, but we lack clear understanding of the mechanisms driving restoration success. Here we studied two indicators of restoration success in temperate rainforests: native tree regeneration and epiphyte colonization. We hypothesized that ecosystem properties such as forest canopy openness, abundance of exotic herbaceous weeds, and the microclimate directly affect the density and diversity of native tree seedlings and epiphytes. Relationships between environmental conditions and the plant community were investigated in 27 restored urban forests spanning 3-70 years in age and in unrestored and remnant urban forests. We used structural equation modelling to determine the direct and indirect drivers of native tree regeneration and epiphyte colonization in the restored forests. Compared to remnant forest, unrestored forest had fewer native canopy tree species, significantly more light reaching the forest floor annually, and higher exotic weed cover. Additionally, epiphyte density was lower and native tree regeneration density was marginally lower in the unrestored forests. In restored forests, light availability was reduced to levels found in remnant forests within 20 years of restoration planting, followed shortly thereafter by declines in herbaceous exotic weeds and reduced fluctuation of relative humidity and soil temperatures. Contrary to expectations, canopy openness was only an indirect driver of tree regeneration and epiphyte colonization, but it directly regulated weed cover and microclimatic fluctuations, both of which directly drove the density and richness of regeneration and epiphyte colonization. Epiphyte density and diversity were also positively related to forest basal area, as large trees provide physical habitat for colonization. These results imply that ecosystem properties change predictably after initial restoration plantings, and that reaching critical thresholds in some ecosystem properties makes conditions suitable for the regeneration of late successional species, which is vital for restoration success and long-term ecosystem sustainability. Abiotic and biotic conditions that promote tree regeneration and epiphyte colonization will likely be present in forests with a basal area ≥27 m2 /ha. We recommend that urban forest restoration plantings be designed to promote rapid canopy closure to reduce light availability, suppress herbaceous weeds, and stabilize the microclimate.


Assuntos
Conservação dos Recursos Naturais , Florestas , Microclima , Plantas Daninhas/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Cidades , Espécies Introduzidas , Nova Zelândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA