Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(1-2): 102-116, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33334821

RESUMO

p53 is an intensely studied tumor-suppressive transcription factor. Recent studies suggest that the RNA-binding protein (RBP) ZMAT3 is important in mediating the tumor-suppressive effects of p53. Here, we globally identify ZMAT3-regulated RNAs and their binding sites at nucleotide resolution in intact colorectal cancer (CRC) cells. ZMAT3 binds to thousands of mRNA precursors, mainly at intronic uridine-rich sequences and affects their splicing. The strongest alternatively spliced ZMAT3 target was CD44, a cell adhesion gene and stem cell marker that controls tumorigenesis. Silencing ZMAT3 increased inclusion of CD44 variant exons, resulting in significant up-regulation of oncogenic CD44 isoforms (CD44v) and increased CRC cell growth that was rescued by concurrent knockdown of CD44v Silencing p53 phenocopied the loss of ZMAT3 with respect to CD44 alternative splicing, suggesting that ZMAT3-mediated regulation of CD44 splicing is vital for p53 function. Collectively, our findings uncover a p53-ZMAT3-CD44 axis in growth suppression in CRC cells.


Assuntos
Processamento Alternativo/genética , Receptores de Hialuronatos/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinogênese/genética , Neoplasias Colorretais/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Células HCT116 , Células HEK293 , Humanos , Receptores de Hialuronatos/metabolismo , Ligação Proteica/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Nucleic Acids Res ; 49(8): e45, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33503264

RESUMO

Crosslinking and immunoprecipitation (CLIP) methods are powerful techniques to interrogate direct protein-RNA interactions and dissect posttranscriptional gene regulatory networks. One widely used CLIP variant is photoactivatable ribonucleoside enhanced CLIP (PAR-CLIP) that involves in vivo labeling of nascent RNAs with the photoreactive nucleosides 4-thiouridine (4SU) or 6-thioguanosine (6SG), which can efficiently crosslink to interacting proteins using UVA and UVB light. Crosslinking of 4SU or 6SG to interacting amino acids changes their base-pairing properties and results in characteristic mutations in cDNA libraries prepared for high-throughput sequencing, which can be computationally exploited to remove abundant background from non-crosslinked sequences and help pinpoint RNA binding protein binding sites at nucleotide resolution on a transcriptome-wide scale. Here we present a streamlined protocol for fluorescence-based PAR-CLIP (fPAR-CLIP) that eliminates the need to use radioactivity. It is based on direct ligation of a fluorescently labeled adapter to the 3'end of crosslinked RNA on immobilized ribonucleoproteins, followed by isolation of the adapter-ligated RNA and efficient conversion into cDNA without the previously needed size fractionation on denaturing polyacrylamide gels. These improvements cut the experimentation by half to 2 days and increases sensitivity by 10-100-fold.


Assuntos
DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Sítios de Ligação , Linhagem Celular , Reagentes de Ligações Cruzadas/química , Eletroforese em Gel de Poliacrilamida , GTP Fosfo-Hidrolases/química , Biblioteca Gênica , Humanos , Imunoprecipitação , Oligonucleotídeos , Reação em Cadeia da Polimerase/métodos , Ligação Proteica , RNA/química , Ribonucleoproteínas/genética , Sensibilidade e Especificidade , Software , Tiouridina/química , Raios Ultravioleta
3.
Faraday Discuss ; 238(0): 589-618, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35775604

RESUMO

The acetylperoxy + HO2 reaction has multiple impacts on the troposphere, with a triplet pathway leading to peracetic acid + O2 (reaction (1a)) competing with singlet pathways leading to acetic acid + O3 (reaction (1b)) and acetoxy + OH + O2 (reaction (1c)). A recent experimental study has reported branching fractions for these three pathways (α1a, α1b, and α1c) from 229 K to 294 K. We constructed a theoretical model for predicting α1a, α1b, and α1c using quantum chemical and Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) simulations. Our main quantum chemical method was Weizmann-1 Brueckner Doubles (W1BD) theory; we combined W1BD and equation-of-motion spin-flip coupled cluster (SF) theory to treat open-shell singlet structures. Using RRKM/ME simulations that included all conformers of acetylperoxy-HO2 pre-reactive complexes led to a 298 K triplet rate constant, k1a = 5.11 × 10-12 cm3 per molecule per s, and values of α1a in excellent agreement with experiment. Increasing the energies of all singlet structures by 0.9 kcal mol-1 led to a combined singlet rate constant, k1b+1c = 1.20 × 10-11 cm3 per molecule per s, in good agreement with experiment. However, our predicted variations in α1b and α1c with temperature are not nearly as large as those measured, perhaps due to the inadequacy of SF theory in treating the transition structures controlling acetic acid + O3 formation vs. acetoxy + OH + O2 formation.

4.
Metabolites ; 14(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38248835

RESUMO

A vitamin D receptor (VDR) deficiency leads to the dysbiosis of intestinal bacteria and is associated with various diseases, including cancer, infections, and inflammatory bowel disease. However, the impact of a VDR deficiency on fungi and archaea is unknown. We conditionally deleted the VDR in Paneth cells (VDRΔPC), intestinal epithelial cells (VDRΔIEC), or myeloid cells (VDRΔLyz) in mice and collected feces for shotgun metagenomic sequencing and untargeted metabolomics. We found that fungi were significantly altered in each knockout (KO) group compared to the VDRLoxp control. The VDRΔLyz mice had the most altered fungi species (three depleted and seven enriched), followed by the VDRΔPC mice (six depleted and two enriched), and the VDRΔIEC mice (one depleted and one enriched). The methanogen Methanofollis liminatans was enriched in the VDRΔPC and VDRΔLyz mice and two further archaeal species (Thermococcus piezophilus and Sulfolobus acidocaldarius) were enriched in the VDRΔLyz mice compared to the Loxp group. Significant correlations existed among altered fungi, archaea, bacteria, and viruses in the KO mice. Functional metagenomics showed changes in several biologic functions, including decreased sulfate reduction and increased biosynthesis of cobalamin (vitamin B12) in VDRΔLyz mice relative to VDRLoxp mice. Fecal metabolites were analyzed to examine the involvement of sulfate reduction and other pathways. In conclusion, a VDR deficiency caused the formation of altered fungi and archaea in a tissue- and sex-dependent manner. These results provide a foundation about the impact of a host factor (e.g., VDR deficiency) on fungi and archaea. It opens the door for further studies to determine how mycobiome and cross-kingdom interactions in the microbiome community and metabolites contribute to the risk of certain diseases.

5.
Sci Rep ; 11(1): 10455, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001972

RESUMO

Lung carcinoids are variably aggressive and mechanistically understudied neuroendocrine neoplasms (NENs). Here, we identified and elucidated the function of a miR-375/yes-associated protein (YAP) axis in lung carcinoid (H727) cells. miR-375 and YAP are respectively high and low expressed in wild-type H727 cells. Following lentiviral CRISPR/Cas9-mediated miR-375 depletion, we identified distinct transcriptomic changes including dramatic YAP upregulation. We also observed a significant decrease in neuroendocrine differentiation and substantial reductions in cell proliferation, transformation, and tumor growth in cell culture and xenograft mouse disease models. Similarly, YAP overexpression resulted in distinct and partially overlapping transcriptomic changes, phenocopying the effects of miR-375 depletion in the same models as above. Transient YAP knockdown in miR-375-depleted cells reversed the effects of miR-375 on neuroendocrine differentiation and cell proliferation. Pathways analysis and confirmatory real-time PCR studies of shared dysregulated target genes indicate that this axis controls neuroendocrine related functions such as neural differentiation, exocytosis, and secretion. Taken together, we provide compelling evidence that a miR-375/YAP axis is a critical mediator of neuroendocrine differentiation and tumorigenesis in lung carcinoid cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Tumor Carcinoide/genética , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Células Neuroendócrinas/patologia , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinogênese/genética , Tumor Carcinoide/patologia , Diferenciação Celular/genética , Proliferação de Células/genética , Exocitose/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA