Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
Nat Methods ; 17(5): 481-494, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251396

RESUMO

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


Assuntos
DNA/administração & dosagem , Eucariotos/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Biologia Marinha , Modelos Biológicos , Transformação Genética , Biodiversidade , Ecossistema , Meio Ambiente , Eucariotos/classificação , Especificidade da Espécie
3.
New Phytol ; 233(2): 890-904, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657283

RESUMO

The Pseudomonas syringae DC3000 type III effector HopAM1 suppresses plant immunity and contains a Toll/interleukin-1 receptor (TIR) domain homologous to immunity-related TIR domains of plant nucleotide-binding leucine-rich repeat receptors that hydrolyze nicotinamide adenine dinucleotide (NAD+ ) and activate immunity. In vitro and in vivo assays were conducted to determine if HopAM1 hydrolyzes NAD+ and if the activity is essential for HopAM1's suppression of plant immunity and contribution to virulence. HPLC and LC-MS were utilized to analyze metabolites produced from NAD+ by HopAM1 in vitro and in both yeast and plants. Agrobacterium-mediated transient expression and in planta inoculation assays were performed to determine HopAM1's intrinsic enzymatic activity and virulence contribution. HopAM1 is catalytically active and hydrolyzes NAD+ to produce nicotinamide and a novel cADPR variant (v2-cADPR). Expression of HopAM1 triggers cell death in yeast and plants dependent on the putative catalytic residue glutamic acid 191 (E191) within the TIR domain. Furthermore, HopAM1's E191 residue is required to suppress both pattern-triggered immunity and effector-triggered immunity and promote P. syringae virulence. HopAM1 manipulates endogenous NAD+ to produce v2-cADPR and promote pathogenesis. This work suggests that HopAM1's TIR domain possesses different catalytic specificity than other TIR domain-containing NAD+ hydrolases and that pathogens exploit this activity to sabotage NAD+ metabolism for immune suppression and virulence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , NAD/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Receptores de Interleucina-1/metabolismo , Virulência
4.
Plant Biotechnol J ; 18(9): 1955-1968, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32031318

RESUMO

Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components.


Assuntos
Agropyron , Triticum , Agropyron/genética , Desidratação , Secas , Genes de Plantas , Humanos , Triticum/genética , Água
5.
Plant Biotechnol J ; 17(2): 373-385, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29979490

RESUMO

Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (>1 mg/g FW in T0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots.


Assuntos
Brachypodium/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Esqualeno/metabolismo , Triterpenos/metabolismo , Brachypodium/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Citosol/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Engenharia Genética , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Proteínas de Plantas/genética , Plastídeos/metabolismo , Sorghum/metabolismo
6.
Plant Physiol ; 177(4): 1425-1438, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29925584

RESUMO

Kafirins are the major storage proteins in sorghum (Sorghum bicolor) grains and form protein bodies with poor digestibility. Since kafirins are devoid of the essential amino acid lysine, they also impart poor protein quality to the kernel. The α-kafirins, which make up most of the total kafirins, are largely encoded by the k1C family of highly similar genes. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to target the k1C genes to create variants with reduced kafirin levels and improved protein quality and digestibility. A single guide RNA was designed to introduce mutations in a conserved region encoding the endoplasmic reticulum signal peptide of α-kafirins. Sequencing of kafirin PCR products revealed extensive edits in 25 of 26 events in one or multiple k1C family members. T1 and T2 seeds showed reduced α-kafirin levels, and selected T2 events showed significantly increased grain protein digestibility and lysine content. Thus, a single consensus single guide RNA carrying target sequence mismatches is sufficient for extensive editing of all k1C genes. The resulting quality improvements can be deployed rapidly for breeding and the generation of transgene-free, improved cultivars of sorghum, a major crop worldwide.


Assuntos
Edição de Genes/métodos , Proteínas de Plantas/genética , Sorghum/genética , Sistemas CRISPR-Cas , Digestão , Lisina , Família Multigênica , Taxa de Mutação , Proteínas de Plantas/farmacocinética , Proteínas de Vegetais Comestíveis/genética , Proteínas de Vegetais Comestíveis/farmacocinética , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos , Sementes/genética , Sementes/metabolismo , Sorghum/metabolismo
7.
Plant Dis ; 103(9): 2277-2287, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31215851

RESUMO

To increase phenylpropanoid constituents and energy content in the versatile C4 grass sorghum (Sorghum bicolor [L.] Moench), sorghum genes for proteins related to monolignol biosynthesis were overexpressed: SbMyb60 (transcriptional activator), SbPAL (phenylalanine ammonia lyase), SbCCoAOMT (caffeoyl coenzyme A [CoA] 3-O-methyltransferase), Bmr2 (4-coumarate:CoA ligase), and SbC3H (coumaroyl shikimate 3-hydroxylase). Overexpression lines were evaluated for responses to stalk pathogens under greenhouse and field conditions. Greenhouse-grown plants were inoculated with Fusarium thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot), which cause yield-reducing diseases. F. thapsinum-inoculated overexpression plants had mean lesion lengths not significantly different than wild-type, except for significantly smaller lesions on two of three SbMyb60 and one of two SbCCoAOMT lines. M. phaseolina-inoculated overexpression lines had lesions not significantly different from wild-type except one SbPAL line (of two lines studied) with mean lesion lengths significantly larger. Field-grown SbMyb60 and SbCCoAOMT overexpression plants were inoculated with F. thapsinum. Mean lesions of SbMyb60 lines were similar to wild-type, but one SbCCoAOMT had larger lesions, whereas the other line was not significantly different than wild-type. Because overexpression of SbMyb60, Bmr2, or SbC3H may not render sorghum more susceptible to stalk rots, these lines may provide sources for development of sorghum with increased phenylpropanoid concentrations.


Assuntos
Ascomicetos , Fusarium , Regulação da Expressão Gênica de Plantas , Lignina , Sorghum , Ascomicetos/fisiologia , Fusarium/fisiologia , Genes de Plantas/genética , Lignina/biossíntese , Lignina/genética , Sorghum/genética , Sorghum/microbiologia
8.
New Phytol ; 217(1): 82-104, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28944535

RESUMO

Few transcription factors have been identified in C4 grasses that either positively or negatively regulate monolignol biosynthesis. Previously, the overexpression of SbMyb60 in sorghum (Sorghum bicolor) has been shown to induce monolignol biosynthesis, which leads to elevated lignin deposition and altered cell wall composition. To determine how SbMyb60 overexpression impacts other metabolic pathways, RNA-Seq and metabolite profiling were performed on stalks and leaves. 35S::SbMyb60 was associated with the transcriptional activation of genes involved in aromatic amino acid, S-adenosyl methionine (SAM) and folate biosynthetic pathways. The high coexpression values between SbMyb60 and genes assigned to these pathways indicate that SbMyb60 may directly induce their expression. In addition, 35S::SbMyb60 altered the expression of genes involved in nitrogen (N) assimilation and carbon (C) metabolism, which may redirect C and N towards monolignol biosynthesis. Genes linked to UDP-sugar biosynthesis and cellulose synthesis were also induced, which is consistent with the observed increase in cellulose deposition in the internodes of 35S::SbMyb60 plants. However, SbMyb60 showed low coexpression values with these genes and is not likely to be a direct regulator of cell wall polysaccharide biosynthesis. These findings indicate that SbMyb60 can activate pathways beyond monolignol biosynthesis, including those that synthesize the substrates and cofactors required for lignin biosynthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metabolismo Secundário , Sorghum/genética , Fatores de Transcrição/metabolismo , Vias Biossintéticas , Parede Celular/metabolismo , Celulose/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Metabolômica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de RNA , Sorghum/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
9.
Plant J ; 85(3): 378-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26712107

RESUMO

The phenylpropanoid biosynthetic pathway that generates lignin subunits represents a significant target for altering the abundance and composition of lignin. The global regulators of phenylpropanoid metabolism may include MYB transcription factors, whose expression levels have been correlated with changes in secondary cell wall composition and the levels of several other aromatic compounds, including anthocyanins and flavonoids. While transcription factors correlated with downregulation of the phenylpropanoid biosynthesis pathway have been identified in several grass species, few transcription factors linked to activation of this pathway have been identified in C4 grasses, some of which are being developed as dedicated bioenergy feedstocks. In this study we investigated the role of SbMyb60 in lignin biosynthesis in sorghum (Sorghum bicolor), which is a drought-tolerant, high-yielding biomass crop. Ectopic expression of this transcription factor in sorghum was associated with higher expression levels of genes involved in monolignol biosynthesis, and led to higher abundances of syringyl lignin, significant compositional changes to the lignin polymer and increased lignin concentration in biomass. Moreover, transgenic plants constitutively overexpressing SbMyb60 also displayed ectopic lignification in leaf midribs and elevated concentrations of soluble phenolic compounds in biomass. Results indicate that overexpression of SbMyb60 is associated with activation of monolignol biosynthesis in sorghum. SbMyb60 represents a target for modification of plant cell wall composition, with the potential to improve biomass for renewable uses.


Assuntos
Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Propanóis/metabolismo , Sorghum/genética , Biomassa , Regulação para Baixo , Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sorghum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Mol Biol Evol ; 33(9): 2417-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27335143

RESUMO

Of central importance in adapting plants of tropical origin to temperate cultivation has been selection of daylength-neutral genotypes that flower early in the temperate summer and take full advantage of its long days. A cross between tropical and temperate sorghums [Sorghum propinquum (Kunth) Hitchc.×S. bicolor (L.) Moench], revealed a quantitative trait locus (QTL), FlrAvgD1, accounting for 85.7% of variation in flowering time under long days. Fine-scale genetic mapping placed FlrAvgD1 on chromosome 6 within the physically largest centiMorgan in the genome. Forward genetic data from "converted" sorghums validated the QTL. Association genetic evidence from a diversity panel delineated the QTL to a 10-kb interval containing only one annotated gene, Sb06g012260, that was shown by reverse genetics to complement a recessive allele. Sb06g012260 (SbFT12) contains a phosphatidylethanolamine-binding (PEBP) protein domain characteristic of members of the "FT" family of flowering genes acting as a floral suppressor. Sb06g012260 appears to have evolved ∼40 Ma in a panicoid ancestor after divergence from oryzoid and pooid lineages. A species-specific Sb06g012260 mutation may have contributed to spread to temperate regions by S. halepense ("Johnsongrass"), one of the world's most widespread invasives. Alternative alleles for another family member, Sb02g029725 (SbFT6), mapping near another flowering QTL, also showed highly significant association with photoperiod response index (P = 1.53×10 (-) (6)). The evolution of Sb06g012260 adds to evidence that single gene duplicates play large roles in important environmental adaptations. Increased knowledge of Sb06g012260 opens new doors to improvement of sorghum and other grain and cellulosic biomass crops.


Assuntos
Sorghum/genética , Alelos , Evolução Biológica , Mapeamento Cromossômico/métodos , Cromossomos de Plantas , Grão Comestível/genética , Evolução Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Duplicação Gênica , Genes de Plantas , Genômica/métodos , Modelos Genéticos , Fotoperíodo , Proteínas de Plantas/genética , Poaceae/genética , Locos de Características Quantitativas , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo
11.
BMC Plant Biol ; 17(1): 123, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28697783

RESUMO

BACKGROUND: Quantitative trait loci (QTLs) detected in one mapping population may not be detected in other mapping populations at all the time. Therefore, before being used for marker assisted breeding, QTLs need to be validated in different environments and/or genetic backgrounds to rule out statistical anomalies. In this regard, we mapped the QTLs controlling various agronomic traits in a recombinant inbred line (RIL) population in response to Nitrogen (N) stress and validated these with the reported QTLs in our earlier study to find the stable and consistent QTLs across populations. Also, with Illumina RNA-sequencing we checked the differential expression of gene (DEG) transcripts between parents and pools of RILs with high and low nitrogen use efficiency (NUE) and overlaid these DEGs on to the common validated QTLs to find candidate genes associated with N-stress tolerance in sorghum. RESULTS: An F7 RIL population derived from a cross between CK60 (N-stress sensitive) and San Chi San (N-stress tolerant) inbred sorghum lines was used to map QTLs for 11 agronomic traits tested under different N-levels. Composite interval mapping analysis detected a total of 32 QTLs for 11 agronomic traits. Validation of these QTLs revealed that of the detected, nine QTLs from this population were consistent with the reported QTLs in earlier study using CK60/China17 RIL population. The validated QTLs were located on chromosomes 1, 6, 7, 8, and 9. In addition, root transcriptomic profiling detected 55 and 20 differentially expressed gene (DEG) transcripts between parents and pools of RILs with high and low NUE respectively. Also, overlay of these DEG transcripts on to the validated QTLs found candidate genes transcripts for NUE and also showed the expected differential expression. For example, DEG transcripts encoding Lysine histidine transporter 1 (LHT1) had abundant expression in San Chi San and the tolerant RIL pool, whereas DEG transcripts encoding seed storage albumin, transcription factor IIIC (TFIIIC) and dwarfing gene (DW2) encoding multidrug resistance-associated protein-9 homolog showed abundant expression in CK60 parent, similar to earlier study. CONCLUSIONS: The validated QTLs among different mapping populations would be the most reliable and stable QTLs across germplasm. The DEG transcripts found in the validated QTL regions will serve as future candidate genes for enhancing NUE in sorghum using molecular approaches.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Perfilação da Expressão Gênica , Genes de Plantas , Locos de Características Quantitativas , Sorghum/genética , Nitrogênio/metabolismo , Melhoramento Vegetal , Sorghum/fisiologia , Estresse Fisiológico
12.
Plant Physiol ; 172(3): 1506-1518, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27660165

RESUMO

Soybean (Glycine max) is a major plant source of protein and oil and produces important secondary metabolites beneficial for human health. As a tool for gene function discovery and improvement of this important crop, a mutant population was generated using fast neutron irradiation. Visual screening of mutagenized seeds identified a mutant line, designated MO12, which produced brown seeds as opposed to the yellow seeds produced by the unmodified Williams 82 parental cultivar. Using forward genetic methods combined with comparative genome hybridization analysis, we were able to establish that deletion of the GmHGO1 gene is the genetic basis of the brown seeded phenotype exhibited by the MO12 mutant line. GmHGO1 encodes a homogentisate dioxygenase (HGO), which catalyzes the committed enzymatic step in homogentisate catabolism. This report describes to our knowledge the first functional characterization of a plant HGO gene, defects of which are linked to the human genetic disease alkaptonuria. We show that reduced homogentisate catabolism in a soybean HGO mutant is an effective strategy for enhancing the production of lipid-soluble antioxidants such as vitamin E, as well as tolerance to herbicides that target pathways associated with homogentisate metabolism. Furthermore, this work demonstrates the utility of fast neutron mutagenesis in identifying novel genes that contribute to soybean agronomic traits.


Assuntos
Biofortificação , Glycine max/enzimologia , Homogentisato 1,2-Dioxigenase/metabolismo , Óleos de Plantas/metabolismo , Sementes/enzimologia , Vitamina E/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/genética , Inibidores Enzimáticos/toxicidade , Deleção de Genes , Genoma de Planta , Herbicidas/toxicidade , Ácido Homogentísico/metabolismo , Isoenzimas/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Mutação/genética , Fenótipo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/fisiologia
13.
Plant Cell ; 26(7): 2831-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005919

RESUMO

Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean.


Assuntos
Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Proteínas de Domínio MADS/genética , Arabidopsis/genética , Sequência de Bases , Mapeamento Cromossômico , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Ligação Genética , Loci Gênicos , Proteínas de Domínio MADS/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Glycine max/crescimento & desenvolvimento
14.
Transgenic Res ; 26(1): 37-49, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27582300

RESUMO

Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.


Assuntos
Defensinas/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Triticum/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Resistência à Doença/genética , Medicago truncatula/genética , Doenças das Plantas/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Simbiose/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
15.
BMC Plant Biol ; 16: 16, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26759170

RESUMO

BACKGROUND: Sorghum is an important C4 crop which relies on applied Nitrogen fertilizers (N) for optimal yields, of which substantial amounts are lost into the atmosphere. Understanding the genetic variation of sorghum in response to limited nitrogen supply is important for elucidating the underlying genetic mechanisms of nitrogen utilization. RESULTS: A bi-parental mapping population consisting of 131 recombinant inbred lines (RILs) was used to map quantitative trait loci (QTLs) influencing different agronomic traits evaluated under normal N (100 kg.ha(-1) fertilizer) and low N (0 kg.ha(-1) fertilizer) conditions. A linkage map spanning 1614 cM was developed using 642 polymorphic single nucleotide polymorphisms (SNPs) detected in the population using Genotyping-By-Sequencing (GBS) technology. Composite interval mapping detected a total of 38 QTLs for 11 agronomic traits tested under different nitrogen levels. The phenotypic variation explained by individual QTL ranged from 6.2 to 50.8%. Illumina RNA sequencing data generated on seedling root tissues revealed 726 differentially expressed gene (DEG) transcripts between parents, of which 108 were mapped close to the QTL regions. CONCLUSIONS: Co-localized regions affecting multiple traits were detected on chromosomes 1, 5, 6, 7 and 9. These potentially pleiotropic regions were coincident with the genomic regions of cloned QTLs, including genes associated with flowering time, Ma3 on chromosome 1 and Ma1 on chromosome 6, gene associated with plant height, Dw2 on chromosome 6. In these regions, RNA sequencing data showed differential expression of transcripts related to nitrogen metabolism (Ferredoxin-nitrate reductase), glycolysis (Phosphofructo-2-kinase), seed storage proteins, plant hormone metabolism and membrane transport. The differentially expressed transcripts underlying the pleiotropic QTL regions could be potential targets for improving sorghum performance under limited N fertilizer through marker assisted selection.


Assuntos
Regulação da Expressão Gênica de Plantas , Sorghum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Grão Comestível/genética , Ligação Genética , Nitrogênio/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(39): 15824-9, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24019506

RESUMO

Suppression of seed shattering was a key step during crop domestication that we have previously suggested to be convergent among independent cereal lineages. Positional, association, expression, and mutant complementation data all implicate a WRKY transcription factor, SpWRKY, in conferring shattering to a wild sorghum relative, Sorghum propinquum. We hypothesize that SpWRKY functions in a manner analogous to Medicago and Arabidopsis homologs that regulate cell wall biosynthesis genes, with low expression toward the end of floral development derepressing downstream cell wall biosynthesis genes to allow deposition of lignin that initiates the abscission zone in the seed-pedicel junction. The recent discovery of a YABBY locus that confers shattering within Sorghum bicolor and other cereals validated our prior hypothesis that some parallel domestication may have been convergent. Ironically, however, the shattering allele of SpWRKY appears to be recently evolved in S. propinquum and illustrates a case in which the genetic control of a trait in a wild relative fails to extrapolate even to closely related crops. Remarkably, the SpWRKY and YABBY loci lie only 300 kb apart and may have appeared to be a single genetic locus in some sorghum populations.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Loci Gênicos/genética , Sementes/genética , Sementes/fisiologia , Sorghum/genética , Sorghum/fisiologia , Sequência de Aminoácidos , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Teste de Complementação Genética , Genoma de Planta/genética , Lignina/metabolismo , Dados de Sequência Molecular , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Mapeamento Físico do Cromossomo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Característica Quantitativa Herdável , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Resistência à Tração
17.
Mol Plant Microbe Interact ; 28(11): 1237-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26214711

RESUMO

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.


Assuntos
Fusarium/metabolismo , Glucosiltransferases/metabolismo , Hordeum/enzimologia , Proteínas de Plantas/metabolismo , Tricotecenos/metabolismo , Triticum/metabolismo , Southern Blotting , Western Blotting , Resistência à Doença/genética , Fusarium/fisiologia , Glucosídeos/metabolismo , Glucosiltransferases/genética , Hordeum/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Triticum/genética , Triticum/microbiologia , Difosfato de Uridina/metabolismo
18.
Plant Biotechnol J ; 13(1): 38-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25065607

RESUMO

Seed oils enriched in omega-7 monounsaturated fatty acids, including palmitoleic acid (16:1∆9) and cis-vaccenic acid (18:1∆11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega-7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ∆9 desaturation of stearoyl (18:0)-acyl carrier protein (ACP) to ∆9 desaturation of palmitoyl (16:0)-acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed-specific co-expression of a mutant ∆9-acyl-ACP and an acyl-CoA desaturase with high specificity for 16:0-ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega-7 monounsaturated fatty acids were obtained. Further increases in omega-7 fatty acid accumulation to 60-65% of the total fatty acids in camelina seeds were achieved by inclusion of seed-specific suppression of 3-keto-acyl-ACP synthase II and the FatB 16:0-ACP thioesterase genes to increase substrate pool sizes of 16:0-ACP for the ∆9-acyl-ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.


Assuntos
Brassicaceae/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Análise do Fluxo Metabólico , Sementes/metabolismo , Varredura Diferencial de Calorimetria , Cromatografia Gasosa , DNA Bacteriano/genética , Germinação , Engenharia Metabólica , Fosfatidilcolinas/metabolismo , Óleos de Plantas/química , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Glycine max/genética , Temperatura , Transformação Genética , Triglicerídeos/metabolismo
19.
Eukaryot Cell ; 13(11): 1431-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25239975

RESUMO

Analysis of fatty acid methyl esters (FAMEs) by gas chromatography (GC) is a common technique for the quantitative and qualitative analysis of acyl lipids. Methods for FAME preparation are typically time-consuming and labor-intensive and require multiple transfers of reagents and products between reaction tubes and autosampler vials. In order to increase throughput and lower the time and materials costs required for FAME preparation prior to GC analysis, we have developed a method in which 10-to-20-mg samples of microbial biomass are transferred to standard GC autosampler vials, transesterified using an emulsion of methanolic trimethylsulfonium hydroxide and hexane, and analyzed directly by GC without further sample handling. This method gives results that are essentially identical to those obtained by the more labor- and material-intensive FAME preparation methods, such as transmethylation with methanolic HCl. We applied this method to the screening of laboratory and environmental isolates of the green alga Chlamydomonas for variations in fatty acid composition. This screening method facilitated two novel discoveries. First, we identified a common laboratory strain of C. reinhardtii, CC-620, completely lacking all ω-3 fatty acids normally found in this organism and showed that this strain contains an inactivating mutation in the CrFAD7 gene, encoding the sole ω-3 desaturase activity in this organism. Second, we showed that some species of Chlamydomonas make Δ6-unsaturated polyunsaturated fatty acids (PUFA) rather than the Δ5 species normally made by the previously characterized laboratory strains of Chlamydomonas, suggesting that there is species-specific variation in the regiospecificity and substrate selectivity of front-end desaturases in this algal genus.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cromatografia Gasosa/métodos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/biossíntese , Sequência de Aminoácidos , Chlamydomonas reinhardtii/genética , Hexanos/química , Alinhamento de Sequência , Especificidade por Substrato , Compostos de Sulfônio/química
20.
Plant Physiol ; 162(3): 1359-69, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23677936

RESUMO

Zeins, the maize (Zea mays) prolamin storage proteins, accumulate at very high levels in developing endosperm in endoplasmic reticulum membrane-bound protein bodies. Products of the multigene α-zein families and the single-gene γ-zein family are arranged in the central hydrophobic core and the cross-linked protein body periphery, respectively, but little is known of the specific roles of family members in protein body formation. Here, we used RNA interference suppression of different zein subclasses to abolish vitreous endosperm formation through a variety of effects on protein body density, size, and morphology. We showed that the 27-kilodalton (kD) γ-zein controls protein body initiation but is not involved in protein body filling. Conversely, other γ-zein family members function more in protein body expansion and not in protein body initiation. Reduction in both 19- and 22-kD α-zein subfamilies severely restricted protein body expansion but did not induce morphological abnormalities, which result from reduction of only the 22-kD α-zein class. Concomitant reduction of all zein classes resulted in severe reduction in protein body number but normal protein body size and morphology.


Assuntos
Endosperma/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Família Multigênica , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA