Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Prod ; 85(5): 1256-1266, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35438991

RESUMO

A metabolomics/peptidomics and genomics approach, using UPLC-MSE, molecular networking, and genome mining, was used to describe the serrawettin W2 lipopeptide family produced by Serratia marcescens NP2. Seven known serrawettin W2 analogues were structurally elucidated along with 17 new analogues, which varied based on the first (fatty acyl length of C8, C10, C12, or C12:1), fifth (Phe, Tyr, Trp, or Leu/Ile), and sixth (Leu, Ile, or Val) residues. Tandem MS results suggested that the previously classified serrawettin W3 may be an analogue of serrawettin W2, with a putative structure of cyclo(C10H18O2-Leu-Ser-Thr-Leu/Ile-Val). Chiral phase amino acid analysis enabled the distinction between l/d-Leu and l-Ile residues within nine purified compounds. 1H and 13C NMR analyses confirmed the structures of four purified new analogues. Additionally, genome mining was conducted using Serratia genome sequences available on the NCBI database to identify the swrA gene using the antiSMASH software. NRPSpredictor2 predicted the specificity score of the adenylation-domain within swrA with 100% for the first, second, and third modules (Leu-Ser-Thr), 60-70% for the fourth module (Phe/Trp/Tyr/Val), and 70% for the fifth module (Val/Leu/Ile), confirming MSE data. Finally, antibacterial activity was observed for compounds 6 and 11 against a clinical Enterococcus faecium strain.


Assuntos
Lipopeptídeos , Peptídeos Cíclicos , Serratia marcescens , Sequência de Aminoácidos , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Cromatografia Líquida , Genômica , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Lipoproteínas , Metabolômica , Fragmentos de Peptídeos , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Serratia marcescens/química , Espectrometria de Massas em Tandem
2.
Sci Rep ; 13(1): 2360, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759548

RESUMO

Secondary metabolic profiling, using UPLC-MSE and molecular networking, revealed the secondary metabolites produced by Serratia marcescens NP10. The NP10 strain co-produced cyclic and open-ring stephensiolides (i.e., fatty acyl chain linked to Thr-Ser-Ser-Ile/Leu-Ile/Leu/Val) and glucosamine derivatives (i.e., fatty acyl chain linked to Val-glucose-butyric/oxo-hexanoic acid), with the structures of sixteen new stephensiolides (L-Y) and three new glucosamine derivatives (L-N) proposed. Genome mining identified sphA (stephensiolides) and gcd (glucosamine derivatives) gene clusters within Serratia genomes available on NBCI using antiSMASH, revealing specificity scores of the adenylation-domains within each module that corroborates MSE data. Of the nine RP-HPLC fractions, two stephensiolides and two glucosamine derivatives exhibited activity against Staphylococcus aureus (IC50 of 25-79 µg/mL). 1H NMR analysis confirmed the structure of the four active compounds as stephensiolide K, a novel analogue stephensiolide U, and glucosamine derivatives A and C. Stephensiolides K and U were found to cause membrane depolarisation and affect the membrane permeability of S. aureus, while glucosamine derivatives A and C primarily caused membrane depolarisation. New members of the stephensiolide and glucosamine derivative families were thus identified, and results obtained shed light on their antibacterial properties and mode of membrane activity.


Assuntos
Serratia marcescens , Staphylococcus aureus , Humanos , Serratia marcescens/genética , Glucosamina/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Front Chem ; 10: 1025979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277345

RESUMO

Natural products derived from microorganisms play a prominent role in drug discovery as potential anti-infective agents. Over the past few decades, lipopeptides produced by particularly Bacillus, Pseudomonas, Streptomyces, Paenibacillus, and cyanobacteria species, have been extensively studied for their antimicrobial potential. Subsequently, daptomycin and polymyxin B were approved by the Food and Drug Administration as lipopeptide antibiotics. Recent studies have however, indicated that Serratia, Brevibacillus, and Burkholderia, as well as predatory bacteria such as Myxococcus, Lysobacter, and Cystobacter, hold promise as relatively underexplored sources of novel classes of lipopeptides. This review will thus highlight the structures and the newly discovered scaffolds of lipopeptide families produced by these bacterial genera, with potential antimicrobial activities. Additionally, insight into the mode of action and biosynthesis of these lipopeptides will be provided and the application of a genome mining approach, to ascertain the biosynthetic gene cluster potential of these bacterial genera (genomes available on the National Center for Biotechnology Information) for their future pharmaceutical exploitation, will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA