Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 26(15): 18975-18981, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30114157

RESUMO

Infrared spectroscopy in the spectral fingerprint region from 6.5 to 20 µm has been applied for decades to identify vapor- and condensed-phase chemicals with high confidence. By employing a unique broadband laser operating from 7.2- to 11.5-µm we show that, in this region, wavelength-dependent Mie-scattering effects substantially modulate the underlying chemical absorption signature, undermining the ability of conventional infrared absorption spectroscopy to identify aerosolized liquids and solids. In the aerosol studied, Mie theory predicts that the positions of spectroscopic features will blue-shift by up to 200 nm, and this behavior is confirmed by experiment, illustrating the critical importance of considering Mie contributions to aerosol spectroscopy in the mid infrared. By examining the spectroscopy of light scattered from an aerosol of the chemical diethyl phthalate, we demonstrate excellent agreement with a Mie-scattering model informed by direct measurements of the particle-size-distribution and complex refractive index.

2.
Opt Express ; 26(9): 12159-12168, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716130

RESUMO

This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis. In addition to describing the QCL array source developed for long wave infrared coverage, a description of an integrated prototype standoff detection system is provided. Experimental standoff detection results using the man-portable system for droplet examination from 1.3 meters are presented using the CWAs VX and T-mustard as test cases. Finally, we consider three significant challenges to working with droplets and liquid films in standoff spectroscopy: substrate uptake of the analyte, time-dependent droplet spread of the analyte, and variable substrate contributions to retrieved signals.

3.
Opt Lett ; 39(20): 6005-8, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25361141

RESUMO

We presented the first demonstration of stand-off Fourier transform infrared (FTIR) spectroscopy using a broadband mid-infrared optical parametric oscillator, with spectral coverage over 2700-3200 cm⁻¹. For vapor-phase water and nitromethane (NM), stand-off spectra was recorded using a concrete target at from 1-m to 2-m range and showed good agreement with reference spectra, and in NM a normalized detection sensitivity of 15 ppm·m·Hz(-1/2) was obtained. Spectra from 50-µL droplets of liquid thiodiglycol were detected at a stand-off distance of 2 m from aluminum, concrete and painted metal surfaces. Our results imply that OPO-based active FTIR stand-off spectroscopy is a promising new technique for the detection of industrial pollutants and the identification of chemical agents, explosives or other hazardous materials.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120763, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35007908

RESUMO

The infrared (IR) spectra of fentanyl, carfentanil and remifentanil, and protonated salts, are computed using quantum chemistry methods. New experimental FTIR spectra are also reported and compared to the calculations. The accuracy of two density functional theory methods, B3LYP and M06-2X, are tested against higher level theories (MP2) and the experimental data. Gas phase IR spectra are calculated for both the neutral and protonated molecules in order to compare with the experimental data measured for various salts of fentanyl and its analogues. Key vibrational modes are selected and studied in detail using a vibrational mode locality calculation. The main contributing atomic movements in these vibrational modes are identified.


Assuntos
Teoria Quântica , Análise Espectral Raman , Fentanila/análogos & derivados , Remifentanil , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA