RESUMO
Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.
Assuntos
Tubarões , Animais , Espécies em Perigo de Extinção , Plâncton , NaviosRESUMO
Body condition in pelagic seabirds impacts key fitness-related traits such as reproductive performance and breeding frequency. Regulation of body condition can be especially important for species with long incubation periods and long individual incubation shifts between foraging trips. Here, we show that body condition of adult Red-billed Tropicbirds (Phaethon aethereus) at St Helena Island, South Atlantic Ocean, exhibited considerable variation between years (2013-2017) and between different stages of the breeding cycle. Females took the first incubation shift following egg laying, after which males and females alternated incubation shifts of varying length, ranging from <1 to 12 days. Body condition declined in both sexes during an incubation shift by an average of 22 g (2.83% of starting mass) per day and over the incubation period; mass loss was significantly greater during longer incubation shifts, later within a shift and later in the total incubation period. There was also significant differences in incubation behaviour and body condition between years; in 2015, coinciding with a moderate coastal warming event along the Angolan-Namibian coastlines, adults on average undertook longer incubation shifts than in other years and had lower body condition. This suggests that substantial between-year prey fluctuations in the Angola Benguela upwelling system may influence prey availability, in turn affecting incubation behaviour and regulation of body condition. Adults rearing chicks showed a significant reduction in body condition when chicks showed the fastest rate of growth. Chick growth rates during 2017 from two localities in the Atlantic Ocean: an oceanic (St Helena) versus neritic (Cabo Verde) population were similar, but chicks from St Helena were overall heavier and larger at fledging. Results from this multi-year study highlight that flexibility and adaptability in body condition regulation will be important for populations of threatened species to optimise resources as global climate change increasingly influences prey availability.
RESUMO
A check-list of the fishes of St Helena Island is presented. The following species are recorded for the first time from St. Helena Island: Rhincodon typus, Mobula tarapacana, Muraena melanotis, Caranx latus, Seriola rivoliana, Balistes capriscus, Lutjanus jocu, Centropyge aurantonotus, Acanthurus coeruleus, Lepidocybium flavobrunneum, Tetrapturus pfluegeri, Coelorinchus geronimo, Pentaceros richardsoni, Gephyroberyx darwinii, Brotula cf multibarbata, Poromitra crassiceps, Echiostoma barbatum, Malacosteus niger, Pachystomias microdon. Including these nineteen new records there are 189 fish species currently known from St Helena. Three of them appear to be undescribed. Eight species and two subspecies are currently considered endemic to St. Helena Island.