Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 39(3): 521-36, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24054330

RESUMO

NOD2 is an intracellular sensor that contributes to immune defense and inflammation. Here we investigated whether NOD2 mediates its effects through control of microRNAs (miRNAs). miR-29 expression was upregulated in human dendritic cells (DCs) in response to NOD2 signals, and miR-29 regulated the expression of multiple immune mediators. In particular, miR-29 downregulated interleukin-23 (IL-23) by targeting IL-12p40 directly and IL-23p19 indirectly, likely via reduction of ATF2. DSS-induced colitis was worse in miR-29-deficient mice and was associated with elevated IL-23 and T helper 17 signature cytokines in the intestinal mucosa. Crohn's disease (CD) patient DCs expressing NOD2 polymorphisms failed to induce miR-29 upon pattern recognition receptor stimulation and showed enhanced release of IL-12p40 on exposure to adherent invasive E. coli. Therefore, we suggest that loss of miR-29-mediated immunoregulation in CD DCs might contribute to elevated IL-23 in this disease.


Assuntos
Doença de Crohn/imunologia , Células Dendríticas/imunologia , Interleucina-23/metabolismo , MicroRNAs/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Animais , Células Cultivadas , Células Dendríticas/metabolismo , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Humanos , Inflamação/imunologia , Subunidade p40 da Interleucina-12/metabolismo , Mucosa Intestinal/imunologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único , Células Th17/imunologia
2.
Malar J ; 19(1): 261, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690097

RESUMO

We have read the publication of Molina-Franky and colleagues on Plasmodium falciparum pre-erythrocytic stage vaccine development (Malaria Journal, 2020;19:56). The commentary revises some of their statements on the RTS,S/AS01 vaccine that are considered either imprecise or incorrect.


Assuntos
Vacinas Antimaláricas/análise , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Eritrócitos/parasitologia , Humanos
3.
NPJ Vaccines ; 8(1): 34, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890168

RESUMO

The mechanisms by which antibodies confer protection vary across vaccines, ranging from simple neutralization to functions requiring innate immune recruitment via Fc-dependent mechanisms. The role of adjuvants in shaping the maturation of antibody-effector functions remains under investigated. Using systems serology, we compared adjuvants in licensed vaccines (AS01B/AS01E/AS03/AS04/Alum) combined with a model antigen. Antigen-naive adults received two adjuvanted immunizations followed by late revaccination with fractional-dosed non-adjuvanted antigen ( NCT00805389 ). A dichotomy in response quantities/qualities emerged post-dose 2 between AS01B/AS01E/AS03 and AS04/Alum, based on four features related to immunoglobulin titers or Fc-effector functions. AS01B/E and AS03 induced similar robust responses that were boosted upon revaccination, suggesting that memory B-cell programming by the adjuvanted vaccinations dictated responses post non-adjuvanted boost. AS04 and Alum induced weaker responses, that were dissimilar with enhanced functionalities for AS04. Distinct adjuvant classes can be leveraged to tune antibody-effector functions, where selective vaccine formulation using adjuvants with different immunological properties may direct antigen-specific antibody functions.

4.
Hum Mol Genet ; 19(12): 2421-32, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20332100

RESUMO

Nance-Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell-cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development.


Assuntos
Actinas/metabolismo , Adesões Focais/metabolismo , Proteínas Nucleares/metabolismo , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Sequência de Aminoácidos , Animais , Células CACO-2 , Citoesqueleto/metabolismo , Adesões Focais/ultraestrutura , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana , Dados de Sequência Molecular , Proteínas Nucleares/genética , Estrutura Terciária de Proteína/genética , Pseudópodes/ultraestrutura , Ratos , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
5.
PLoS One ; 17(11): e0276505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36355775

RESUMO

Transcriptional responses to adjuvanted vaccines can vary substantially among populations. Interindividual diversity in levels of pathogen exposure, and thus of cell-mediated immunological memory at baseline, may be an important determinant of population differences in vaccine responses. Adjuvant System AS01 is used in licensed or candidate vaccines for several diseases and populations, yet the impact of pre-existing immunity on its adjuvanticity remains to be elucidated. In this exploratory post-hoc analysis of clinical trial samples (clinicalTrials.gov: NCT01424501), we compared gene expression patterns elicited by two immunizations with the candidate tuberculosis (TB) vaccine M72/AS01, between three groups of individuals with different levels of memory responses to TB antigens before vaccination. Analyzed were one group of TB-disease-treated individuals, and two groups of TB-disease-naïve individuals who were (based on purified protein derivative [PPD] skin-test results) stratified into PPD-positive and PPD-negative groups. Although TB-disease-treated individuals displayed slightly stronger transcriptional responses after each vaccine dose, functional gene signatures were overall not distinctly different between groups. Considering the similarities with the signatures found previously for other AS01-adjuvanted vaccines, many features of the response appeared to be adjuvant-driven. Across groups, cell proliferation-related signals at 7 days post-dose 1 were associated with increased anti-M72 antibody response magnitudes. These early signals were stronger in the TB-disease-treated group as compared to both TB-disease-naïve groups. Interindividual homogeneity in gene expression levels was also higher for TB-disease-treated individuals post-dose 1, but increased in all groups post-dose 2 to attain similar levels between the three groups. Altogether, strong cell-mediated memory responses at baseline accelerated and amplified transcriptional responses to a single dose of this AS01-adjuvanted vaccine, resulting in more homogenous gene expression levels among the highly-primed individuals as compared to the disease-naïve individuals. However, after a second vaccination, response heterogeneity decreased and was similar across groups, irrespective of the degree of immune memory acquired at baseline. This information can support the design and analysis of future clinical trials evaluating AS01-adjuvanted vaccines.


Assuntos
Vacinas contra a Tuberculose , Tuberculose , Humanos , Adjuvantes Imunológicos , Tuberculina/metabolismo , Tuberculose/prevenção & controle , Vacinação , Ensaios Clínicos como Assunto
6.
Vaccine Insights ; 1(3): 165-181, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37091190

RESUMO

Immunization strategies against tuberculosis (TB) that confer better protection than neonatal vaccination with the 101-year-old Bacille Calmette-Guerin (BCG) are urgently needed to control the epidemic, but clinical development is hampered by a lack of established immune correlates of protection (CoPs). Two phase 2b clinical trials offer the first opportunity to discover human CoPs against TB. Adolescent BCG re-vaccination showed partial protection against Mycobacterium tuberculosis (Mtb) infection, as measured by sustained IFNγ release assay (IGRA) conversion. Adult M72/AS01E vaccination showed partial protection against pulmonary TB. We describe two collaborative research programs to discover CoPs against TB and ensure rigorous, streamlined use of available samples, involving international immunology experts in TB and state-of-the-art technologies, sponsors and funders. Hypotheses covering immune responses thought to be important in protection against TB have been defined and prioritized. A statistical framework to integrate the data analysis strategy was developed. Exploratory analyses will be performed to generate novel hypotheses.

7.
Hum Mol Genet ; 18(14): 2643-55, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19414485

RESUMO

Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication-triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved.


Assuntos
Catarata/genética , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas Nucleares/genética , Adulto , Sequência de Bases , Catarata/congênito , Catarata/metabolismo , Criança , Pré-Escolar , Feminino , Dosagem de Genes , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Recém-Nascido , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Linhagem , Adulto Jovem
8.
NPJ Vaccines ; 6(1): 158, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934069

RESUMO

Emulsion adjuvants such as MF59 and AS03 have been used for more than two decades as key components of licensed vaccines, with over 100 million doses administered to diverse populations in more than 30 countries. Substantial clinical experience of effectiveness and a well-established safety profile, along with the ease of manufacturing have established emulsion adjuvants as one of the leading platforms for the development of pandemic vaccines. Emulsion adjuvants allow for antigen dose sparing, more rapid immune responses, and enhanced quality and quantity of adaptive immune responses. The mechanisms of enhancement of immune responses are well defined and typically characterized by the creation of an "immunocompetent environment" at the site of injection, followed by the induction of strong and long-lasting germinal center responses in the draining lymph nodes. As a result, emulsion adjuvants induce distinct immunological responses, with a mixed Th1/Th2 T cell response, long-lived plasma cells, an expanded repertoire of memory B cells, and high titers of cross-neutralizing polyfunctional antibodies against viral variants. Because of these various properties, emulsion adjuvants were included in pandemic influenza vaccines deployed during the 2009 H1N1 influenza pandemic, are still included in seasonal influenza vaccines, and are currently at the forefront of the development of vaccines against emerging SARS-CoV-2 pandemic variants. Here, we comprehensively review emulsion adjuvants, discuss their mechanism of action, and highlight their profile as a benchmark for the development of additional vaccine adjuvants and as a valuable tool to allow further investigations of the general principles of human immunity.

9.
Sci Rep ; 11(1): 20821, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675324

RESUMO

Gene expression data is commonly used in vaccine studies to characterize differences between treatment groups or sampling time points. Group-wise comparisons of the transcriptional perturbations induced by vaccination have been applied extensively for investigating the mechanisms of action of vaccines. Such approaches, however, may not be sensitive enough for detecting changes occurring within a minority of the population under investigation or in single individuals. In this study, we developed a data analysis framework to characterize individual subject response profiles in the context of repeated measure experiments, which are typical of vaccine mode of action studies. Following the definition of the methodology, this was applied to the analysis of human transcriptome responses induced by vaccination with a subunit influenza vaccine. Results highlighted a substantial heterogeneity in how different subjects respond to vaccination. Moreover, the extent of transcriptional modulation experienced by each individual subject was found to be associated with the magnitude of vaccine-specific functional antibody response, pointing to a mechanistic link between genes involved in protein production and innate antiviral response. Overall, we propose that the improved characterization of the intersubject heterogeneity, enabled by our approach, can help driving the improvement and optimization of current and next-generation vaccines.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Transcriptoma , Adulto , Formação de Anticorpos , Biologia Computacional , Humanos , Vacinas contra Influenza/farmacologia , Influenza Humana/genética , Influenza Humana/imunologia , Vacinação
10.
Med ; 2(11): 1269-1286.e9, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-35590199

RESUMO

BACKGROUND: Malaria remains a key cause of mortality in low-income countries. RTS,S/AS01 is currently the most advanced malaria vaccine, demonstrating ∼50% efficacy in controlled human malaria infection (CHMI) studies in malaria-naive adults and ∼30%-40% efficacy in field trials in African infants and children. However, a higher vaccine efficacy is desirable. METHODS: Modification of the vaccine regimen in a CHMI trial in malaria-naive individuals resulted in significant increase in protection. While three equal monthly RTS,S/AS01 doses (RRR) were used originally, the administration of a delayed third dose with 20% of the original antigen dose (RRr) resulted in ∼87% protection, linked to enhanced antibody affinity maturation. Here, we sought to identify a novel molecular basis for this higher protective efficacy using Systems Serology. FINDINGS: We demonstrate that the delayed fractional dose maintains monocyte phagocytosis and NK activation mediated by NANP6-specific antibodies, key correlates of protection for the RRR regimen. However, it is also marked by a higher breadth of C-term Fc effector functions, including enhanced phagocytosis. The RRr regimen breaches immunodominance of the humoral immune response, inducing a balanced response across the C-terminal (Pf16) and NANP region of CSP, both of which were linked to protection. CONCLUSIONS: Collectively, these data point to an unexpectedly concordant evolution in Fab avidity and expanded C-term Fc effector functions, providing novel insights into the basis for higher protection conferred by the delayed fractional dose in malaria-naive individuals. FUNDING: This research was supported by PATH's Malaria Vaccine Initiative and the MGH Research Scholars program.


Assuntos
Vacinas Antimaláricas , Malária , Adulto , Anticorpos Antiprotozoários , Afinidade de Anticorpos , Criança , Humanos , Imunidade Humoral , Lactente , Malária/prevenção & controle , Vacinas Antimaláricas/uso terapêutico
11.
NPJ Vaccines ; 6(1): 110, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462438

RESUMO

RTS,S/AS01 is an advanced pre-erythrocytic malaria vaccine candidate with demonstrated vaccine efficacy up to 86.7% in controlled human malaria infection (CHMI) studies; however, reproducible immune correlates of protection (CoP) are elusive. To identify candidates of humoral correlates of vaccine mediated protection, we measured antibody magnitude, subclass, and avidity for Plasmodium falciparum (Pf) circumsporozoite protein (CSP) by multiplex assays in two CHMI studies with varying RTS,S/AS01B vaccine dose and timing regimens. Central repeat (NANP6) IgG1 magnitude correlated best with protection status in univariate analyses and was the most predictive for protection in a multivariate model. NANP6 IgG3 magnitude, CSP IgG1 magnitude, and total serum antibody dissociation phase area-under-the-curve for NANP6, CSP, NPNA3, and N-interface binding were also associated with protection status in the regimen adjusted univariate analysis. Identification of multiple immune response features that associate with protection status, such as antibody subclasses, fine specificity and avidity reported here may accelerate development of highly efficacious vaccines against P. falciparum.

12.
Front Big Data ; 4: 672460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212134

RESUMO

RTS,S/AS01 (GSK) is the world's first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit-with this dataset-in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a "quality as well as quantity" hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.

13.
J Immunol ; 181(2): 869-77, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606638

RESUMO

The regulatory function of invariant NKT (iNKT) cells for tolerance induction and prevention of autoimmunity is linked to a specific cytokine profile that comprises the secretion of type 2 cytokines like IL-4 and IL-10 (NKT2 cytokine profile). The mechanism responsible for iNKT cell differentiation toward a type 2 phenotype is unknown. Herein we show that costimulatory signals provided by the surface receptor signaling lymphocytic activation molecule (SLAM) on myeloid dendritic cells (mDC) to iNKT cells is crucial for NKT2 orientation. Additionally, we demonstrate that the impaired acquisition of an NKT2 cytokine phenotype in nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes is due to defective SLAM-induced signals generated by NOD mDC. Mature mDC of C57BL/6 mice express SLAM and induce C57BL/6 or NOD iNKT cells to acquire a predominant NKT2 cytokine phenotype in response to antigenic stimulation with the iNKT cell-specific Ag, the alpha-galactosylceramide. In contrast, mature NOD mDC express significantly lower levels of SLAM and are unable to promote GATA-3 (the SLAM-induced intracellular signal) up-regulation and IL-4/IL-10 production in iNKT cells from NOD or C57BL/6 mice. NOD mice carry a genetic defect of the Slamf1 gene that is associated with reduced SLAM expression on double-positive thymocytes and altered iNKT cell development in the thymus. Our data suggest that the genetic Slamf1 defect in NOD mice also affects SLAM expression on other immune cells such as the mDC, thus critically impairing the peripheral differentiation of iNKT cells toward a regulatory NKT2 type.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Fator de Transcrição GATA3/metabolismo , Células Matadoras Naturais/imunologia , Receptores de Superfície Celular/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos CD/imunologia , Diferenciação Celular , Células Dendríticas/metabolismo , Fator de Transcrição GATA3/imunologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-4/imunologia , Interleucina-4/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Receptores de Superfície Celular/imunologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Subpopulações de Linfócitos T/metabolismo
14.
Sci Transl Med ; 12(569)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177181

RESUMO

The current routine use of adjuvants in human vaccines provides a strong incentive to increase our understanding of how adjuvants differ in their ability to stimulate innate immunity and consequently enhance vaccine immunogenicity. Here, we evaluated gene expression profiles in cells from whole blood elicited in naive subjects receiving the hepatitis B surface antigen formulated with different adjuvants. We identified a core innate gene signature emerging 1 day after the second vaccination and that was shared by the recipients of vaccines formulated with adjuvant systems AS01B, AS01E, or AS03. This core signature associated with the magnitude of the hepatitis B surface-specific antibody response and was characterized by positive regulation of genes associated with interferon-related responses or the innate cell compartment and by negative regulation of natural killer cell-associated genes. Analysis at the individual subject level revealed that the higher immunogenicity of AS01B-adjuvanted vaccine was linked to its ability to induce this signature in most vaccinees even after the first vaccination. Therefore, our data suggest that adjuvanticity is not strictly defined by the nature of the receptors or signaling pathways it activates but by the ability of the adjuvant to consistently induce a core inflammatory signature across individuals.


Assuntos
Vacinas contra Hepatite B , Vacinas contra Influenza , Adjuvantes Imunológicos , Anticorpos Antivirais , Antígenos de Superfície da Hepatite B/genética , Humanos , Imunogenicidade da Vacina , Vacinação
15.
Sci Transl Med ; 12(553)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32718991

RESUMO

Vaccine development has the potential to be accelerated by coupling tools such as systems immunology analyses and controlled human infection models to define the protective efficacy of prospective immunogens without expensive and slow phase 2b/3 vaccine studies. Among human challenge models, controlled human malaria infection trials have long been used to evaluate candidate vaccines, and RTS,S/AS01 is the most advanced malaria vaccine candidate, reproducibly demonstrating 40 to 80% protection in human challenge studies in malaria-naïve individuals. Although antibodies are critical for protection after RTS,S/AS01 vaccination, antibody concentrations are inconsistently associated with protection across studies, and the precise mechanism(s) by which vaccine-induced antibodies provide protection remains enigmatic. Using a comprehensive systems serological profiling platform, the humoral correlates of protection against malaria were identified and validated across multiple challenge studies. Rather than antibody concentration, qualitative functional humoral features robustly predicted protection from infection across vaccine regimens. Despite the functional diversity of vaccine-induced immune responses across additional RTS,S/AS01 vaccine studies, the same antibody features, antibody-mediated phagocytosis and engagement of Fc gamma receptor 3A (FCGR3A), were able to predict protection across two additional human challenge studies. Functional validation using monoclonal antibodies confirmed the protective role of Fc-mediated antibody functions in restricting parasite infection both in vitro and in vivo, suggesting that these correlates may mechanistically contribute to parasite restriction and can be used to guide the rational design of an improved vaccine against malaria.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Humanos , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Estudos Prospectivos , Receptores de IgG , Vacinação
16.
Front Immunol ; 10: 2150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572370

RESUMO

Novel adjuvant technologies have a key role in the development of next-generation vaccines, due to their capacity to modulate the duration, strength and quality of the immune response. The AS01 adjuvant is used in the malaria vaccine RTS,S/AS01 and in the licensed herpes-zoster vaccine (Shingrix) where the vaccine has proven its ability to generate protective responses with both robust humoral and T-cell responses. For many years, animal models have provided insights into adjuvant mode-of-action (MoA), generally through investigating individual genes or proteins. Furthermore, modeling and simulation techniques can be utilized to integrate a variety of different data types; ranging from serum biomarkers to large scale "omics" datasets. In this perspective we present a framework to create a holistic integration of pre-clinical datasets and immunological literature in order to develop an evidence-based hypothesis of AS01 adjuvant MoA, creating a unified view of multiple experiments. Furthermore, we highlight how holistic systems-knowledge can serve as a basis for the construction of models and simulations supporting exploration of key questions surrounding adjuvant MoA. Using the Systems-Biology-Graphical-Notation, a tool for graphical representation of biological processes, we have captured high-level cellular behaviors and interactions, and cytokine dynamics during the early immune response, which are substantiated by a series of diagrams detailing cellular dynamics. Through explicitly describing AS01 MoA we have built a consensus of understanding across multiple experiments, and so we present a framework to integrate modeling approaches into exploring adjuvant MoA, in order to guide experimental design, interpret results and inform rational design of vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Lipídeo A/análogos & derivados , Modelos Biológicos , Saponinas/farmacologia , Vacinas , Animais , Combinação de Medicamentos , Humanos , Lipídeo A/farmacologia
17.
Sci Immunol ; 4(35)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31152090

RESUMO

Tissue residency is considered a defining feature of the innate lymphoid cell (ILC) populations located within mucosal and adipose tissues. ILCs are also present within all lymphoid tissues, but whether ILCs migrate between lymphoid and nonlymphoid sites and in what context is poorly understood. To determine whether migratory ILCs exist within peripheral lymph nodes (LNs), we labeled all cells within the brachial LN (bLN) of transgenic mice expressing a photoconvertible fluorescent protein by direct exposure to light. Tracking of cellular changes in the labeled LN revealed the gradual migration of new ILCs into the tissue, balanced by egress of ILCs dependent on sphingosine-1-phosphate receptors. Most of the migratory ILCs were ILC1s, entering LNs directly from the circulation in a CD62L- and CCR7-dependent manner and thus behaving like conventional natural killer (cNK) cells. Upon egress, both ILC1s and cNK cells were found to recirculate through peripheral LNs. A distinct population of migratory ILC2s were detected in the LN, but most of the ILC3s were tissue resident. Functionally, both migratory and resident ILC1s within LNs were able to rapidly produce IFN-γ to support the generation of robust TH1 T cell responses after immunization. Thus, migratory and resident ILC populations exist within peripheral LNs, with ILC1s, akin to cNK cells, able to traffic into these tissues where they can contribute to the initiation of adaptive immunity.


Assuntos
Movimento Celular/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Linfonodos/citologia , Células Th1/imunologia , Animais , Citometria de Fluxo , Interferon gama/metabolismo , Selectina L/metabolismo , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CCR7/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Transcriptoma
19.
Front Immunol ; 9: 564, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632533

RESUMO

Systems biology has the potential to identify gene signatures associated with vaccine immunogenicity and protective efficacy. The main objective of this study was to identify optimal postvaccination time points for evaluating peripheral blood RNA expression profiles in relation to vaccine immunogenicity and potential efficacy in recipients of the candidate tuberculosis vaccine M72/AS01. In this phase II open-label study (NCT01669096; https://clinicaltrials.gov/), healthy Bacillus Calmette-Guérin-primed, HIV-negative adults were administered two doses (30 days apart) of M72/AS01. Twenty subjects completed the study and 18 subjects received two doses. Blood samples were collected pre-dose 1, pre-dose 2, and 1, 7, 10, 14, 17, and 30 days post-dose 2. RNA expression in whole blood (WB) and peripheral blood mononuclear cells (PBMCs) was quantified using microarray technology. Serum interferon-gamma responses and M72-specific CD4+ T cell responses to vaccination, and the observed safety profile were similar to previous trials. Two different approaches were utilized to analyze the RNA expression data. First, a kinetic analysis of RNA expression changes using blood transcription modules revealed early (1 day post-dose 2) activation of several pathways related to innate immune activation, both in WB and PBMC. Second, using a previously identified gene signature as a classifier, optimal postvaccination time points were identified. Since M72/AS01 efficacy remains to be established, a PBMC-derived gene signature associated with the protective efficacy of a similarly adjuvanted candidate malaria vaccine was used as a proxy for this purpose. This approach was based on the assumption that the AS01 adjuvant used in both studies could induce shared innate immune pathways. Subjects were classified as gene signature positive (GS+) or gene signature negative (GS-). Assignments of subjects to GS+ or GS- groups were confirmed by significant differences in RNA expression of the gene signature genes in PBMCs at 14 days post-dose 2 relative to prevaccination and in WB samples at 7, 10, 14, and 17 days post-dose 2 relative to prevaccination. Hence, in comparison with a prevaccination, 7, 10, 14, and 17 days postvaccination appeared to be suitable time points for identifying potentially clinically relevant transcriptome responses to M72/AS01 in WB samples.


Assuntos
Vacina BCG/administração & dosagem , Lipídeo A/análogos & derivados , RNA Mensageiro/imunologia , Saponinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adolescente , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Combinação de Medicamentos , Feminino , Perfilação da Expressão Gênica , Humanos , Interferon gama/sangue , Interferon gama/imunologia , Cinética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lipídeo A/administração & dosagem , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , RNA Mensageiro/sangue , RNA Mensageiro/genética , Proteínas Recombinantes/imunologia , Vacinação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA