RESUMO
The off-label use of imiquimod (IQ) for hemangioma treatment has shown clinical benefits. We have previously reported a selective direct IQ-cytotoxic effect on transformed (H5V) vs. normal (1G11) endothelial cells (EC). In the present study, we investigated the mechanism underlying this selective cytotoxicity in terms of TLR7/8 receptor expression, NF-κB signalling and time-dependent modifications of oxidative stress parameters (ROS: reactive oxygen species, catalase and superoxide dismutase activities, GSH/GSSG and lipid peroxidation). TLR7/8 level was extremely low in both cell lines, and IQ did not upregulate TLR7/8 expression or activate NF-κB signalling. IQ significantly induced ROS in H5V after 2 h and strongly affected antioxidant defenses. After 12 h, enzyme activities were restored to baseline levels but a robust drop in GSH/GSSG persisted together with increased lipid peroxidation levels and a marked mitochondrial dysfunction. Although in normal IQ-treated EC some oxidative stress parameters were affected after 4 h, mitochondrial health and GSH/GSSG ratio remained notably unaffected after 12 h. Therefore, the early alterations (0-2 h) in transformed EC breached redox homeostasis as strongly as to enhance their susceptibility to IQ. This interesting facet of IQ as redox disruptor could broaden its therapeutic potential for other skin malignancies, alone or in adjuvant schemes.
Assuntos
Glutationa , NF-kappa B , Antioxidantes/metabolismo , Células Endoteliais/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Homeostase , Imiquimode/farmacologia , NF-kappa B/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Receptor 7 Toll-LikeRESUMO
The aim of this study was to analyze the biochemical alterations in the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Mussels were fed during 4 weeks with the green algae Scenedesmus vacuolatus previously exposed to a commercial formulation of glyphosate (6â¯mgâ¯L-1 active principle) with the addition of alkyl aryl polyglycol ether surfactant. After 1, 7, 14, 21 and 28 days of dietary exposure, glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), carboxylesterases (CES) and alkaline phosphatase (ALP) activities, glutathione (GSH) content and damage to lipids and proteins levels were analyzed. A significant increase (72%) in the GST activity and a significant decrease (26%) in the CES activity in the mussels fed on glyphosate exposed algae for 28 days were observed. The ALP activity was significantly increased at 21 and 28 days of dietary exposure (48% and 72%, respectively). GSH content and CAT, SOD and AchE activities did not show any differences between the exposed and non exposed bivalves. No oxidative damage to lipids and proteins, measured as TBARS and carbonyl content respectively, was observed in response to glyphosate dietary exposure. The decrease in the CES activity and the increases in GST and ALP activities observed in L. fortunei indicate that dietary exposure to glyphosate provokes metabolic alterations, related with detoxification mechanisms.
Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Mytilidae/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Hidrolases de Éster Carboxílico/metabolismo , Catalase/metabolismo , Dieta/veterinária , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Glicina/toxicidade , Mytilidae/metabolismo , Estresse Oxidativo , Scenedesmus , Alimentos Marinhos , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , GlifosatoRESUMO
Co-exposure soil studies of pollutants are necessary for an appropriate ecological risk assessment. Here, we examined the effects of two-component mixtures of metal oxide nanoparticles (ZnO NPs or goethite NPs) with the insecticide chlorpyrifos (CPF) under laboratory conditions in short-term artificial soil assays using Eisenia andrei earthworms. We characterized NPs and their mixtures by scanning electron microscopy, atomic force microscopy, dynamic light scattering and zeta potential, and evaluated effects on metal accumulation, oxidative stress enzymes, and neurotoxicity related biomarkers in single and combined toxicity assays. Exposure to ZnO NPs increased Zn levels compared to control in single and combined exposure (ZnO NPs + CPF) at 72 h and 7 days, respectively. In contrast, there was no indication of Fe increase in organisms exposed to goethite NPs. One of the most notable effects on oxidative stress biomarkers was produced by single exposure to goethite NPs, showing that the worms were more sensitive to goethite NPs than to ZnO NPs. Acetylcholinesterase and carboxylesterase activities indicated that ZnO NPs alone were not neurotoxic to earthworms, but similar degrees of inhibition were observed after single CPF and ZnO NPs + CPF exposure. Differences between single and combined exposure were found for catalase and superoxide dismutase (goethite NPs) and for glutathione S-transferase (ZnO NPs) activities, mostly at 72 h. These findings suggest a necessity to evaluate mixtures of NPs with co-existing contaminants in soil, and that the nature of metal oxide NPs and exposure time are relevant factors to be considered when assessing combined toxicity, as it may have an impact on ecotoxicological risk assessment.
Assuntos
Clorpirifos , Nanopartículas Metálicas , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/efeitos dos fármacos , Clorpirifos/toxicidade , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Óxido de Zinco/toxicidade , Inseticidas/toxicidade , Óxidos/toxicidadeRESUMO
In this study, the impact of technical grade glyphosate acid on Limnoperna fortunei was assessed employing outdoor microcosms treated with nominal glyphosate concentrations of 1, 3 and 6 mg L(-1). At the end of the experiment (26 days), catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), acetylcholinesterase (AChE), carboxylesterases (CES) and alkaline phosphatase (ALP) activities, and lipid peroxidation levels were analyzed. GST and ALP activities and lipid peroxidation levels showed a significant increase with respect to controls in the mussels exposed to glyphosate (up to 90, 500 and 69 percent, respectively). CES and SOD activities showed a significant decrease in glyphosate exposed bivalves with respect to controls (up to 48 and 37 percent, respectively). CAT and AChE did not show differences between exposed and no exposed bivalves. The increase in lipid peroxidation levels and the decrease in SOD and CES activities observed in L. fortunei indicate that glyphosate had adverse effects on the metabolism of this bivalve. The results of the present study also indicate that a "multibiomarker approach" provides a more precise knowledge of the impact of glyphosate on L. fortunei.
Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Mytilidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Glutationa Transferase/metabolismo , Glicina/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Mytilidae/metabolismo , Superóxido Dismutase/metabolismo , GlifosatoRESUMO
This study aimed to investigate the acute effects of chlorpyrifos on biomarkers related to neurotoxicity and immunotoxicity in two allopatric freshwater gastropod species belonging to the family Planorbidae. For this purpose, Planorbarius corneus and Biomphalaria glabrata were exposed to chlorpyrifos (active ingredient or commercial formulation) for 48 h at environmentally realistic concentrations (1 and 7.5 µg L-1). Basal acetylcholinesterase activity in soft tissues and hemolymph was almost one order of magnitude higher in P. corneus than in B. glabrata. However, upon chlorpyrifos exposure, statistically significant inhibition of enzymatic activity was registered in both species. Acetylcholinesterase was more sensitive to inhibition in soft tissues than in hemolymph. The highest inhibition was observed in the B. glabrata soft tissues exposed to the commercial formulation (88 % at 1 µg L-1 and 93 % at 7.5 µg L-1). Hemocyte number and lysosomal membrane stability did not show significant changes with respect to controls in any of the exposed groups. Superoxide anion generation was diminished (21-46 %) in P. corneus hemocytes exposed to the active ingredient and in B. glabrata hemocytes exposed to the active ingredient or the formulation. In contrast, hemocyte phagocytic activity increased in all exposed groups. Phagocytosis was most stimulated (89 %) in hemocytes sampled from B. glabrata treated with 7.5 µg L-1 chlorpyrifos. Altogether the results suggest that the freshwater gastropods P. corneus and B. glabrata are suitable model animals for environmental monitoring studies in the Northern Hemisphere and Latin America, respectively. Furthermore, these results add information on the relevance of testing pesticide formulations and on the usefulness of acetylcholinesterase inhibition and immunological parameters as biomarkers of the acute effects of chlorpyrifos in these species.
Assuntos
Biomphalaria/fisiologia , Clorpirifos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomphalaria/efeitos dos fármacos , Inibidores da Colinesterase , Monitoramento Ambiental , Água Doce , Gastrópodes/fisiologia , Hemócitos/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos , PraguicidasRESUMO
The effects of mixtures of nanoparticles (NPs) and other chemicals have been poorly studied in terrestrial invertebrates. In this study, we investigated the effects of binary mixtures of goethite (α-FeOOH) NPs and metallic (Cd and Pb) or organic (chlorpyrifos, CPF) contaminants in Eisenia andrei earthworms. We used the filter paper contact test to evaluate (i) the uptake of NPs in organisms exposed to the mixtures of NPs+Metals and NPs+CPF and (ii) the potential effects of the mixture of NPs+CPF on the CPF-induced inhibition of the biomarker enzymes acetylcholinesterase (AChE) and carboxylesterases (CES). We used the artificial soil test to deepen the study on joint effects of NPs+CPF. All compounds were applied separately and in binary mixtures. In the single exposure treatment, Fe levels decreased significantly in organisms exposed to NPs on filter paper, suggesting systemic effects aimed at eliminating Fe incorporated through NPs. Conversely, earthworms exposed to binary mixtures showed Fe levels similar (NPs+Metals) to or higher (NPs+CPF) than controls. The earthworms single exposed to NPs presented no changes in AChE and CES activities. In the artificial soil test, the only treatment that showed AChE inhibition after 72 h was single CPF exposure, while no significant changes were observed in CES activity. However, after 7-day exposure in artificial soil or 72-h exposure on filter paper, the mixture of NPs+CPF induced a similar degree of AChE and CES inhibition as single CPF exposure. All these suggested that NPs did not produce neurotoxic effects, and that the inhibition of the enzymes' activities in all cases was due to the presence of the pesticide. On the other hand, the differences in the pattern of Fe accumulation in the earthworms indicate that the presence of other contaminants in the exposure media can modify the uptake and/or the excretion of Fe and evidence the interactions that may be found in binary mixtures of metal oxide NPs and other pre-existing contaminants in the soil ecosystem.
Assuntos
Clorpirifos , Inseticidas , Nanopartículas , Oligoquetos , Praguicidas , Animais , Ecossistema , Compostos de Ferro , MineraisRESUMO
Azinphos-methyl is an organophosphate insecticide used for pest control on a number of food crops in many parts of the world. The oligochaete Lumbriculus variegatus and pigmented and non-pigmented specimens of the gastropod Biomphalaria glabrata are freshwater invertebrates that have been recommended for contamination studies. Recently, it has been shown that L. variegatus worms exhibit a higher cholinesterase (ChE) activity and a greater sensitivity to in vivo ChE inhibition by azinphos-methyl than pigmented B. glabrata snails. The aims of the present study were (1) to investigate if, in addition to its anticholinesterase action, azinphos-methyl has also pro-oxidant activity in L. variegatus and B. glabrata, and (2) to examine if species that are highly susceptible to the neurotoxic effects of organophosphates also suffer a greater degree of oxidative stress. Therefore, total glutathione (t-GSH) levels and activities of cholinesterase (ChE), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glucose 6-phosphate dehydrogenase (G6PDH) were measured in the whole body soft tissue of organisms exposed for 48 and 96 h to a level of azinphos-methyl that produces 50% of inhibition on ChE. Results showed different patterns of antioxidant responses between the gastropods and the oligochaetes, and even between the two phenotypes of gastropods: (1) in exposed L. variegatus t-GSH levels increased and CAT and SOD activities decreased with respect to control organisms, (2) in pigmented gastropods, SOD decreased while CAT transiently diminished, and (3) in non-pigmented gastropods, SOD activity showed a biphasic response. GST and G6PDH were not altered by azinphos-methyl exposure. Of note, t-GSH levels were 4-fold times higher in L. variegatus than in both phenotypes of B. glabrata. This may suggest that GSH could play a more important role in antioxidant defense in L. variegatus than in B. glabrata.
Assuntos
Antioxidantes/metabolismo , Azinfos-Metil/toxicidade , Biomphalaria/metabolismo , Inseticidas/toxicidade , Oligoquetos/metabolismo , Animais , Catalase/metabolismo , Colinesterases/sangue , Enzimas/metabolismo , Glutationa/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Fenótipo , Proteínas/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Carbamate insecticides such as carbaryl and organophosphates such as azinphos-methyl share the ability to inhibit the activity of B-esterases. This study aimed to (1) assess the inhibitory effects of carbaryl on B-esterase activity in soft tissues and hemolymph of Planorbarius corneus; (2) establish whether binary mixtures of carbaryl and azinphos-methyl depart or not from a model of concentration addition on the inhibition of cholinesterase activity; (3) determine the bioconcentration and elimination of the pesticides. The results showed that exposure of gastropods to increasing concentrations of carbaryl (0.1-5â¯mgâ¯L-1) for 48â¯h inhibited cholinesterase activity in a concentration-dependent manner, with an EC50 of 1.4⯱â¯0.3â¯mgâ¯L-1 and 1.2⯱â¯0.1â¯mgâ¯L-1 for soft tissue and hemolymph, respectively. Carboxylesterase activity, measured with the substrates p-nitrophenyl butyrate and p-nitrophenyl acetate, was between 2.3 and 25 times more sensitive to carbaryl inhibition than cholinesterase activity. Binary mixtures corresponding to 0.5 EC50 carbarylâ¯+â¯0.5 EC50 azinphos-methyl and 0.75 EC50 carbarylâ¯+â¯0.75 EC50 azinphos-methyl produced inhibitions of cholinesterase activity similar to those of individual pesticides, following a model of concentration addition. Bioconcentration was analyzed using a one-compartment model. The absorption kinetics (k1) for both pesticides alone (1.4â¯mgâ¯L-1 of carbaryl or 1.8â¯mgâ¯L-1 of azinphos-methyl) or mixed (1.4â¯mgâ¯L-1 of carbarylâ¯+â¯1.8â¯mgâ¯L-1 of azinphos-methyl) were similar. The elimination kinetics ratio (k2) estimated for the pesticides alone or in the mixtures showed that carbaryl was eliminated 3.5 times faster than azinphos-methyl. These results suggest that exposure of Planorbarius corneus to binary mixtures of carbaryl and azinphos-methyl for 48â¯h follow a concentration addition model on inhibition of cholinesterase activity and that the pesticide mixtures do not change the toxicokinetic parameters of the parent compounds.
Assuntos
Azinfos-Metil/toxicidade , Carbaril/farmacocinética , Carbaril/toxicidade , Água Doce , Gastrópodes/efeitos dos fármacos , Animais , Carboxilesterase/metabolismo , Colinesterases/metabolismo , Gastrópodes/enzimologia , Hemolinfa/metabolismo , Cinética , Toxicocinética , Poluentes Químicos da Água/toxicidadeRESUMO
In this study, some biochemical features and the extent of inhibition induced by the organophosphorous pesticide azinphos-methyl on the cholinesterase (ChE) activity present in whole soft tissue of two freshwater invertebrate species, the gastropod Biomphalaria glabrata and the oligochaete Lumbriculus variegatus were investigated. Both invertebrate organisms presented marked differences in ChE activity, type of enzymes and subcellular location. Acetylthiocholine was the substrate preferred by B. glabrata ChE. The enzyme activity was located preferentially in the supernatant of 11,000 x g centrifugation and was inhibited by increasing concentrations of substrate but not by iso-OMPA. Results showed that there were progressive inhibitions of the enzyme activity, with values 21%, 59%, 72%, 76%, and 82% lower than the control at levels of 1, 10, 50, 100 and 1000 microM of eserine, respectively. In contrast, L. variegatus ChE activity was distributed both in the supernatant and pellet fractions, with values approximately 6 and 20 times higher than B. glabrata, respectively. Studies with butyrylthiocholine and iso-OMPA suggested that about 72% of the activity corresponded to butyrylcholinesterase. A strong enzyme inhibition (88-94%) was found at low eserine concentrations (1-10 microM). ChE activity from L. variegatus and B. glabrata was inhibited by in vivo exposure to azinphos-methyl suggesting that both species can form the oxon derivative of this pesticide. However, both invertebrate species showed a very different susceptibility to the insecticide. The NOEC and EIC50 values were 500 and 1000 times lower for L. variegatus than for B. glabrata, reflecting that the oligochaetes were much more sensitive organisms. A different pattern was also observed for the recovery of the enzymatic activity when the organisms were transferred to clean water. The recuperation process was faster for the oligochaetes than for the gastropods. Mortality was not observed in either of the experimental conditions assayed, not even at concentrations that induced 90% of ChE inhibition. The differences in substrate specificity, sensitivity to inhibitors, and subcellular location between the ChEs of B. glabrata and L. variegatus could be the main factors contributing to the differential susceptibility to azinphos-methyl ChE inhibition found in the present study.
Assuntos
Azinfos-Metil/toxicidade , Inibidores da Colinesterase/toxicidade , Oligoquetos/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Animais , Biomarcadores , Colinesterases/metabolismo , Água Doce , Inseticidas/toxicidade , Oligoquetos/enzimologia , Caramujos/enzimologia , Especificidade da EspécieRESUMO
Azinphos-methyl (AZM) and chlorpyrifos (CPF) are broad-spectrum organophosphate insecticides used for pest control on a number of food crops in many parts of the world that have been shown to inhibit cholinesterase activity in the non-target freshwater gastropod Planorbarius corneus. The present study was undertaken to determine: (a) whether AZM and CPF induce oxidative stress in P. corneus, and (b) whether a mixture of both organophosphates that causes a higher neurotoxicity than single pesticides also causes an enhanced oxidative stress. To this end, non-enzymatic and enzymatic parameters were measured in the soft tissues of snails acutely exposed to the insecticides in single-chemical (2.5 mg AZM L(-1) and 7.5 µg CPF L(-1)) and a binary-mixture (1.25 mg AZM L(-1) plus 3.75 µg CPF L(-1)) studies. At 24 h, all pesticide-exposed groups showed significantly decreased glutathione (GSH) and glutathione disulfide (GSSG) levels when compared to control animals. At 48 h, all exposed groups showed an alteration of the redox status (GSH/GSSG ratio) and a significant increase in malondialdehyde levels. The exposure for 48 h to AZM and CPF, alone or in the binary mixture, also resulted in a significant decrease of the antioxidant superoxide dismutase activity. The greatest decrease was observed with CPF exposure (59% of decrease relative to the control group). A significant increase in catalase and glutathione S-transferase activities was observed in CPF group and in CPF and AZM+CPF groups, respectively. The activities of glutathione reductase and glucose 6-phosphate dehydrogenase did not show significant changes with respect to controls in any treatment group. In conclusion, the data shown in the present study provide evidence that AZM, CPF and a mixture of both organophosphates are able to induce oxidative stress and oxidative damage in P. corneus tissues. However, no similarities between the degree of neurotoxicity and the degree of alterations of the measured oxidative stress parameters were found.
Assuntos
Azinfos-Metil/toxicidade , Clorpirifos/toxicidade , Gastrópodes/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Ativação Enzimática/efeitos dos fármacos , Água Doce , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Inseticidas/toxicidadeRESUMO
The naturally occurring polyamines--putrescine, spermidine and spermine--are organic cations present in all living cells and essential for cell growth and differentiation. The aim of the present study was to extend the investigations on the effects of porphyrinogenic compounds on polyamine metabolism. This was achieved by studying putrescine, spermidine and spermine levels in a model of acute porphyria, i.e. 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced porphyria, and in a model of non-acute porphyria, i.e. hexachlorobenzene (HCB)-induced porphyria. HCB administration to female Wistar rats for 7, 14, 21, 28 and 56 days did not alter polyamine levels in liver, even though rats presented clear signs of HCB-induced porphyria. In contrast to HCB, DDC treatment resulted in a remarkable increase in putrescine levels in the liver of female and male Sprague-Dawley rats. This increase was due, at least in part, to ornithine decarboxylase (ODC) activation. DDC induction of putrescine levels did not show organ specificity, since it could also be seen in adrenal gland. Interestingly, the deregulation of polyamine biosynthesis occurred concomitantly with the deregulation of the heme biosynthetic pathway. In addition to porphyria, it is known that DDC intoxication affects several proteins of the hepatocyte cytoskeleton. It is suggested that DDC-induced increase in ODC activity and putrescine levels may be an early event contributing to alter the cytoskeleton.
Assuntos
Poliaminas Biogênicas/metabolismo , Dicarbetoxi-Di-Hidrocolidina/farmacologia , Hexaclorobenzeno/farmacologia , Porfirinas/biossíntese , 5-Aminolevulinato Sintetase/metabolismo , Animais , Feminino , Ferroquelatase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ornitina Descarboxilase/metabolismo , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Caracteres Sexuais , Uroporfirinogênio Descarboxilase/metabolismoRESUMO
Though pesticide mixtures are commonly encountered in fresh water systems, the knowledge of their effects on non-target aquatic species is scarce. The present investigation was undertaken to explore the in vivo inhibition of the freshwater gastropod snail Planorbarius corneus cholinesterase (ChE) and carboxylesterases (CES) activities by the organophosphorus pesticides azinphos-methyl (AZM) and chlorpyrifos (CPF). To this end, snails were exposed for 48 h to different concentrations of AZM and CPF in single-chemical and binary-mixture studies, and ChE and CES activities were measured in the whole soft body tissues and hemolymph. ChE activity was measured with acetylthiocholine as substrate and CES activity was measured with four substrates: p-nitrophenyl acetate, p-nitrophenyl butyrate, 1- and 2-naphthyl acetate. Single-chemical experiments showed that CPF was a more potent inhibitor of ChE activity than AZM (350 and 27 times for the whole soft tissue and hemolymph, respectively). CES were 15 times more sensitive than ChE when the activities were measured in the whole soft tissue of the animals exposed to AZM. Based on a default assumption of concentration addition, P. corneus snails were exposed to mixtures of AZM+CPF designed to yield predicted soft tissue ChE inhibitions of 31% (mixture 1), 50% (mixture 2) and 61% (mixture 3). Results showed that ChE inhibition produced by mixture 1 followed a model of concentration addition. In contrast, the other mixtures showed synergism, both in whole soft tissue and hemolymph. In addition, results obtained when the snails were exposed sequentially to the pesticides showed that the sequence AZM/CPF produced at 48 h a higher ChE inhibition than the sequence CPF/CPF. A range of metabolic pathways and responses associated with bioactivation or detoxification may play important roles in organophosphorus interactions. In particular, the data presented in the present study indicate that CES enzymes would be important factors in determining the effects of the mixtures of OPs on P. corneus ChE activity.
Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Clorpirifos/toxicidade , Colinesterases/metabolismo , Gastrópodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ativação Enzimática/efeitos dos fármacosRESUMO
In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC(50) values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF.
Assuntos
Acanthaceae/enzimologia , Azinfos-Metil/análogos & derivados , Azinfos-Metil/farmacologia , Clorpirifos/análogos & derivados , Clorpirifos/farmacologia , Colinesterases/metabolismo , Oxigênio/química , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Sinergismo Farmacológico , Praguicidas/química , Praguicidas/farmacologiaRESUMO
Cholinesterases and carboxylesterases belong to the group of B-esterases, the serine superfamily of esterases that are inhibited by organophosphorus compounds. It is now generally accepted that before using the B-esterases as biomarkers of exposure to organophosphorus and carbamates in a given species, the biochemical characteristics of these enzymes should be carefully studied. In this study, the enzyme/s and the tissue/s to be selected as sensitive biomarkers of organophosphorus exposition in the freshwater gastropod Biomphalaria glabrata were investigated. Firstly, the substrate dependence of cholinesterase and carboxylesterase activities in whole organism soft tissue and in different tissues of the snail (head-foot, pulmonary region, digestive gland, and gonads) was analyzed. Measurements of cholinesterase activity were performed using three substrates: acetylthiocholine (AcSCh), propionylthiocholine (PrSCh), and butyrylthiocholine (BuSCh). Carboxylesterase activity was determined using four different substrates: 1-naphthyl acetate (1-NA), 2-naphthyl acetate (2-NA), p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). Regardless of the tissue analyzed, the highest specific activity was obtained when using AcSCh, followed by PrSCh. Cholinesterase activity measured with BuSCh was very low in all cases. On the other hand, the highest cholinesterase activity was measured in head-foot and in pulmonary region, representing in the case of AcSCh hydrolysis 196% and 180% of the activity measured in whole organism soft tissue, respectively. In contrast, AcSCh hydrolysis in digestive gland and gonads was 28% and 50% of that measured in whole organism soft tissue. Regarding carboxylesterase activity, although all tissues hydrolyzed the four substrates assayed, substrate preferences varied among tissues. In particular, digestive glands showed higher carboxylesterase activity than the other tissues (299%, 359% and 137% of whole organism soft tissue activity) when measured with 1-NA, 2-NA and p-NPA as substrates, respectively. In contrast, with p-NPB as substrate, the highest carboxylesterase activity was observed in pulmonary region. Exposure of the snails for 48 h to azinphos-methyl concentrations in the range of 0.05-2.5 mg L⻹ resulted in different degrees of inhibition of cholinesterase and carboxylesterase activities, depending on the enzyme, pesticide concentration, the substrate, and the tissue analyzed. In general, carboxylesterase activity measured with p-NPA and p-NPB was much more sensitive to azinphos-methyl inhibition than cholinesterase activity. The results also showed that while B-esterase activities in whole organism soft tissue and pulmonary region recovered completely within 14 days, carboxylesterase activity in digestive glands remained highly inhibited. On the whole, the results of the present study emphasize how important it is to characterize and measure cholinesterase and carboxylesterase activities jointly to make a proper assessment of the impact of organophosphorus pesticides in non-target species.
Assuntos
Azinfos-Metil/toxicidade , Biomphalaria/efeitos dos fármacos , Biomphalaria/enzimologia , Carboxilesterase/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Carboxilesterase/antagonistas & inibidores , Colinesterases/metabolismo , Ativação Enzimática/efeitos dos fármacosRESUMO
Azinphos-methyl is an organophosphate insecticide used for pest control on a number of food crops in many parts of the world. The snail Biomphalaria glabrata is a freshwater gastropod widely distributed in South America, Central America and Africa. The aim of the present work was to investigate whether azinphos-methyl causes alterations in the reproduction of B. glabrata. To this end, gastropod pigmented specimens were exposed to various concentrations of the insecticide (0.021, 0.5, 2.5, and 5 mg L(-1)) for either 2 or 14 d. Along 14 d, several reproduction parameters and cholinesterase (ChE) activity were evaluated. In each group, the number of egg masses, the number of eggs per mass, the number of hatchings, the time to hatching, and the survival of the offspring after one month of treatment was evaluated. The results showed that, depending on the concentration and time of exposure, azinphos-methyl induced alterations in the reproduction of B. glabrata. These alterations were mainly represented by a decrease in the number of egg masses, and, in some cases, by a lower number or even the total absence of hatchings. Thus, the gastropods exposed to 2.5 and 5 mg L(-1) of azinphos-methyl for 14 d showed ChE inhibitions higher than 35% along time and completely lost their ability to reproduce. On the other hand, exposure to high acute concentrations or exposure to low concentrations for 14 d resulted in ChE inhibition equal to or lower than 35% between 7 and 14 d of treatment and similar alterations in reproduction. These were represented by a decrease in the number of egg masses. At low pestice levels, the number of egg masses and the number of offspring resulted to be more sensitive biomarkers than ChE inhibition. It is concluded that the insecticide azinphos-methyl can cause a decline in the reproductive performance of B. glabrata.
Assuntos
Azinfos-Metil/toxicidade , Biomphalaria/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Colinesterases/metabolismo , Inseticidas/toxicidade , Animais , Biomphalaria/metabolismo , Feminino , Reprodução/efeitos dos fármacosRESUMO
In this study, the effects of sublethal concentrations of the carbamate carbaryl on the cholinesterase (ChE) and carboxylesterase (CES) activities present in the oligochaete Lumbriculus variegatus and in the pigmented Biomphalaria glabrata gastropod were investigated. The results showed that ChE activity from both species was inhibited by in vivo and in vitro exposure to carbaryl, with EC(50) and IC(50) values approximately 20 times lower for the oligochaete than for the gastropod. On the other hand, the recovery process in uncontaminated media was more efficient in oligochaetes than in snails. Thus, in only 2h the oligochaetes showed no inhibition with respect to control values whereas the snails did not reach control values even after 48h of being in pesticide-free water. CES activity was investigated in whole body soft tissue homogenates using three different substrates: p-nitrophenyl butyrate, 1-naphthyl acetate (NA) and 2-NA. In addition, the presence of multiple CES isozymes in L. variegatus and B. glabrata extracts, with activity towards 1- and 2-NA, was confirmed by native polyacrylamide electrophoresis. In both species, the activities measured using the naphthyl substrates were higher than the activity towards p-nitrophenyl butyrate. In addition, B. glabrata showed a higher CES activity than L. variegatus independently of the substrate used. In L. variegatus, in vivo CES activity towards the different substrates was less sensitive to carbaryl inhibition than ChE activity. In contrast, in B. glabrata, CES activity towards p-nitrophenyl butyrate was inhibited at lower insecticide concentrations than ChE. The results of this study contribute to the knowledge of the sensitivity of non-target freshwater invertebrate Type B-esterases towards pesticides.
Assuntos
Biomphalaria/efeitos dos fármacos , Carbaril/toxicidade , Hidrolases de Éster Carboxílico/metabolismo , Colinesterases/metabolismo , Oligoquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomphalaria/enzimologia , Inibidores Enzimáticos/toxicidade , Concentração Inibidora 50 , Oligoquetos/enzimologia , Praguicidas/toxicidade , Fatores de TempoRESUMO
Rodents treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) are a model of two hepatic toxic manifestations: porphyria and the appearance of hepatic cytoplasmic protein aggregates (Mallory-Denk Bodies, MDBs). MDBs are induced after long-term DDC feeding, consist primarily of keratins 8 and 18, and contain glutamine-lysine cross-links generated by transglutaminases (TGs). TGs are Ca(2+)-dependent enzymes which catalyze the formation of covalent bonds between proteins and between proteins and polyamines. The aim of the current study was to investigate the time-course of TG hepatic activity in CF1 male mice either acutely or chronically treated with DDC and to correlate this activity with polyamine and porphyrin levels. On day 3 of the treatment, statistically significant increases in TG activity (75%), porphyrin content (6740%) and spermidine levels (73%) were observed. Although not statistically significant, at this time point putrescine levels showed an increase of 52%. The highest TG activity was observed on day 30 (522%), while porphyrin levels were still gradually increasing by day 45 (37,000%). From day 7 of the treatment and until the end of the experiment, putrescine levels remained increased (781%). Spermine levels were not affected by the treatment. The DDC-induced increases in putrescine and spermidine levels herein reported seem to be an early event contributing to the stimulation of liver TG activity, and thus to the promotion of cross-linking reactions between keratin proteins. This in turn would contribute to the formation of protein aggregates, which would lead to the appearance of MDBs. Due to the pro-oxidant and antioxidant properties of polyamines, it is possible to speculate that putrescine and spermidine may also participate at several levels in the oxidative stress processes associated with MDB formation.
Assuntos
Poliaminas Biogênicas/análise , Corpos de Inclusão/metabolismo , Fígado/metabolismo , Transglutaminases/metabolismo , Animais , Corpos de Inclusão/efeitos dos fármacos , Masculino , Camundongos , Modelos Animais , Porfirinas/análise , Piridinas/toxicidadeRESUMO
Hexaclorobenzene (HCB), one of the most persistent environmental pollutants, can cause a wide range of toxic effects including cancer in animals, and hepatotoxicity and porphyria both in humans and animals. In the present study, liver microsomal cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolism, hepatic PGE production, and cytosolic phospholipase A2 (cPLA2) activity were investigated in an experimental model of porphyria cutanea tarda induced by HCB. Female Wistar rats were treated with a single daily dose of HCB (100 mg kg(-1) body weight) for 5 days and were sacrificed 3, 10, 17, and 52 days after the last dose. HCB treatment induced the accumulation of hepatic porphyrins from day 17 and increased the activities of liver ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and aminopyrine N-demethylase (APND) from day 3 after the last dose. Liver microsomes from control and HCB-treated rats generated, in the presence of NADPH, hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs), 11,12-Di HETE, and omega-OH/omega-1-OH AA. HCB treatment caused an increase in total NADPH CYP-dependent AA metabolism, with a higher response at 3 days after the last HCB dose than at the other time points studied. In addition, HCB treatment markedly enhanced PGE production and release in liver slices. This HCB effect was time dependent and reached its highest level after 10 days. At this time cPLA2 activity was shown to be increased. Unexpectedly, HCB produced a significant decrease in cPLA2 activity on the 17th and 52nd day. Our results demonstrated for the first time that HCB induces both the cyclooxygenase and CYP-dependent AA metabolism. The effects of HCB on AA metabolism were previous to the onset of a marked porphyria and might contribute to different aspects of HCB-induced liver toxicity such as alterations of membrane fluidity and membrane-bound protein function. Observations also suggested that a possible role of cPLA2 in the early increase of AA metabolism cannot be excluded. However, the existence of other pathway(s) for metabolizable AA generation different from cPLA2 activation is also proposed.