RESUMO
BACKGROUND: Carcinogenic risks of internal exposures to alpha-emitters (except radon) are poorly understood. Since exposure to alpha particles-particularly through inhalation-occurs in a range of settings, understanding consequent risks is a public health priority. We aimed to quantify dose-response relationships between lung dose from alpha-emitters and lung cancer in nuclear workers. METHODS: We conducted a case-control study, nested within Belgian, French, and UK cohorts of uranium and plutonium workers. Cases were workers who died from lung cancer; one to three controls were matched to each. Lung doses from alpha-emitters were assessed using bioassay data. We estimated excess odds ratio (OR) of lung cancer per gray (Gy) of lung dose. RESULTS: The study comprised 553 cases and 1,333 controls. Median positive total alpha lung dose was 2.42 mGy (mean: 8.13 mGy; maximum: 316 mGy); for plutonium the median was 1.27 mGy and for uranium 2.17 mGy. Excess OR/Gy (90% confidence interval)-adjusted for external radiation, socioeconomic status, and smoking-was 11 (2.6, 24) for total alpha dose, 50 (17, 106) for plutonium, and 5.3 (-1.9, 18) for uranium. CONCLUSIONS: We found strong evidence for associations between low doses from alpha-emitters and lung cancer risk. The excess OR/Gy was greater for plutonium than uranium, though confidence intervals overlap. Risk estimates were similar to those estimated previously in plutonium workers, and in uranium miners exposed to radon and its progeny. Expressed as risk/equivalent dose in sieverts (Sv), our estimates are somewhat larger than but consistent with those for atomic bomb survivors.See video abstract at, http://links.lww.com/EDE/B232.
Assuntos
Partículas alfa/efeitos adversos , Indústrias Extrativas e de Processamento , Neoplasias Pulmonares/mortalidade , Exposição Ocupacional/efeitos adversos , Plutônio/efeitos adversos , Urânio/efeitos adversos , Idoso , Bélgica/epidemiologia , Estudos de Casos e Controles , Indústrias Extrativas e de Processamento/estatística & dados numéricos , Feminino , França/epidemiologia , Humanos , Neoplasias Pulmonares/etiologia , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/estatística & dados numéricos , Radiometria , Fatores de Risco , Reino Unido/epidemiologiaRESUMO
The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.