Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Immunol ; 204(2): 438-448, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31818982

RESUMO

In inflamed human tissues, we often find intact eosinophilic granules, but not eosinophils themselves. Eosinophils, tissue-dwelling granulocytes with several homeostatic roles, have a surprising association with fibrinogen and tissue remodeling. Fibrinogen is a complex glycoprotein with regulatory roles in hemostasis, tumor development, wound healing, and atherogenesis. Despite its significance, the functional link between eosinophils and fibrinogen is not understood. We tested IL-5-primed mouse bone marrow-derived and human blood-sorted eosinophil activity against FITC-linked fibrinogen substrates. The interactions between these scaffolds and adhering eosinophils were quantified using three-dimensional laser spectral, confocal, and transmission electron microscopy. Eosinophils were labeled with major basic protein (MBP) Ab to visualize granules and assessed by flow cytometry. Both mouse and human eosinophils showed firm adhesion and degraded up to 27 ± 3.1% of the substrate area. This co-occurred with active MBP-positive granule release and the expression of integrin CD11b. Mass spectrometry analysis of fibrinogen proteolytic reactions detected the presence of eosinophil peroxidase, MBP, and fibrin α-, ß-, and γ-chains. Eosinophil activity was adhesion dependent, as a blocking Ab against CD11b significantly reduced adhesion, degranulation, and fibrinogenolysis. Although adhered, eosinophils exhibited no proteolytic activity on collagen matrices. Cytolytic degranulation was defined by loss of membrane integrity, cell death, and presence of cell-free granules. From transmission electron microscopy images, we observed only fibrinogen-exposed eosinophils undergoing this process. To our knowledge, this is the first report to show that fibrinogen is a specific trigger for cytolytic eosinophil degranulation with implications in human disease.


Assuntos
Eosinófilos/imunologia , Fibrinogênio/metabolismo , Inflamação/metabolismo , Animais , Antígeno CD11b/metabolismo , Adesão Celular , Morte Celular , Degranulação Celular , Células Cultivadas , Citotoxicidade Imunológica , Proteína Básica Maior de Eosinófilos/metabolismo , Humanos , Inflamação/imunologia , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Vesículas Secretórias/metabolismo
2.
Int Arch Allergy Immunol ; 182(8): 663-678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34077948

RESUMO

Concomitant dramatic increase in prevalence of allergic and metabolic diseases is part of a modern epidemic afflicting technologically advanced societies. While clinical evidence points to clear associations between various metabolic factors and atopic disease, there is still a very limited understanding of the mechanisms that link the two. Dysregulation of central metabolism in metabolic syndrome, obesity, diabetes, and dyslipidemia has a systemic impact on multiple tissues and organs, including cells of the epithelial barrier. While much of epithelial research in allergy has focused on the immune-driven processes, a growing number of recent studies have begun to elucidate the role of metabolic components of disease. This review will revisit clinical evidence for the relationship between metabolic and allergic diseases, as well as discuss potential mechanisms driving metabolic dysfunction of the epithelial barrier. Among them, novel studies highlight links between dysregulation of the insulin pathway, glucose metabolism, and loss of epithelial differentiation in asthma. Studies of mitochondrial structure and bioenergetics in lean and obese asthmatic phenotypes recently came to light to provide a novel framework linking changes in tricarboxylic acid cycle and oxidative phosphorylation with arginine metabolism and nitric oxide bioavailability. New research established connections between arachidonate metabolism, autophagy, and airway disease, as well as systemic dyslipidemia in atopic dermatitis and ceramide changes in the epidermis. Taken together, studies of metabolism have a great potential to open doors to a new class of therapeutic strategies, better characterization of disease endotypes, as well as enable a systems biology approach to mechanisms of allergic disease.


Assuntos
Suscetibilidade a Doenças , Metabolismo Energético , Células Epiteliais/metabolismo , Homeostase , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Animais , Biomarcadores , Diabetes Mellitus/metabolismo , Humanos , Resistência à Insulina , Redes e Vias Metabólicas , Mitocôndrias , Obesidade/complicações , Obesidade/etiologia , Obesidade/metabolismo , Transdução de Sinais
4.
PLoS One ; 18(10): e0271281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37819947

RESUMO

CONCLUSION: Sexual dimorphism in lung inflammation is both time and tissue compartment dependent. Spatiotemporal variability in sex differences in a murine model of asthma must be accounted for when planning experiments to model the sex bias in allergic inflammation.


Assuntos
Asma , Pneumonia , Feminino , Masculino , Animais , Camundongos , Pulmão , Caracteres Sexuais , Modelos Animais de Doenças , Inflamação , Camundongos Endogâmicos BALB C
5.
J Leukoc Biol ; 111(1): 113-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857341

RESUMO

Bone marrow is a hematopoietic site harboring multiple populations of myeloid cells in different stages of differentiation. Murine bone marrow eosinophils are traditionally identified by Siglec-F(+) staining using flow cytometry, whereas neutrophils are characterized by Ly6G(+) expression. However, using flow cytometry to characterize bone marrow hematopoietic cells in wild-type mice, we found substantial gray areas in identification of these cells. Siglec-F(+) mature eosinophil population constituted only a minority of bone marrow Lin(+)CD45(+) pool (5%). A substantial population of Siglec-F(-) cells was double positive for neutrophil marker Ly6G and eosinophil lineage marker, IL-5Rα. This granulocyte population with mixed neutrophil and eosinophil characteristics is typically attributable to neutrophil pool based on neutral granule staining and expression of Ly6G and myeloid peroxidase. It is distinct from Lineage(-) myeloid progenitors or Siglec-F(+)Ly6G(+) maturing eosinophil precursors, and can be accurately identified by Lineage(+) staining and positive expression of markers IL-5Rα and Ly6G. At 15-50% of all CD45(+) hematopoietic cells in adult mice (percentage varies by sex and age), this is a surprisingly dominant population, which increases with age in both male and female mice. RNA-seq characterization of these cells revealed a complex immune profile and the capacity to secrete constituents of the extracellular matrix. When sorted from bone marrow, these resident cells had neutrophilic phenotype but readily acquired all characteristics of eosinophils when cultured with G-CSF or IL-5, including expression of Siglec-F and granular proteins (Epx, Mbp). Surprisingly, these cells were also able to differentiate into Ly6C(+) monocytes when cultured with M-CSF. Herein described is the discovery of an unexpected hematopoietic flexibility of a dominant population of multipotent myeloid cells, typically categorized as neutrophils, but with the previously unknown plasticity to contribute to mature pools of eosinophils and monocytes.


Assuntos
Antígenos Ly/análise , Eosinófilos/citologia , Subunidade alfa de Receptor de Interleucina-5/análise , Monócitos/citologia , Células Progenitoras Mieloides/citologia , Neutrófilos/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Feminino , Leucopoese , Masculino , Camundongos Endogâmicos BALB C
6.
Viruses ; 13(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198852

RESUMO

Epithelial characteristics underlying the differential susceptibility of chronic asthma to SARS-CoV-2 (COVID-19) and other viral infections are currently unclear. By revisiting transcriptomic data from patients with Th2 low versus Th2 high asthma, as well as mild, moderate, and severe asthmatics, we characterized the changes in expression of human coronavirus and influenza viral entry genes relative to sex, airway location, and disease endotype. We found sexual dimorphism in the expression of SARS-CoV-2-related genes ACE2, TMPRSS2, TMPRSS4, and SLC6A19. ACE2 receptor downregulation occurred specifically in females in Th2 high asthma, while proteases broadly assisting coronavirus and influenza viral entry, TMPRSS2, and TMPRSS4, were highly upregulated in both sexes. Overall, changes in SARS-CoV-2-related gene expression were specific to the Th2 high molecular endotype of asthma and different by asthma severity and airway location. The downregulation of ACE2 (COVID-19, SARS) and ANPEP (HCoV-229E) viral receptors wascorrelated with loss of club and ciliated cells in Th2 high asthma. Meanwhile, the increase in DPP4 (MERS-CoV), ST3GAL4, and ST6GAL1 (influenza) was associated with increased goblet and basal activated cells. Overall, this study elucidates sex, airway location, disease endotype, and changes in epithelial heterogeneity as potential factors underlying asthmatic susceptibility, or lack thereof, to SARS-CoV-2.


Assuntos
Asma/imunologia , COVID-19/imunologia , Infecções por Coronavirus/imunologia , Células Epiteliais/virologia , Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Influenza Humana/imunologia , Índice de Gravidade de Doença , Asma/genética , Asma/virologia , COVID-19/genética , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/imunologia , Infecções por Coronavirus/genética , Células Epiteliais/classificação , Feminino , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Influenza Humana/genética , Masculino , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Caracteres Sexuais
7.
Cells ; 10(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917349

RESUMO

Eosinophils play surprisingly diverse roles in health and disease. Accordingly, we have now begun to appreciate the scope of the functional and phenotypic heterogeneity and plasticity of these cells. Along with tissue-recruited subsets during inflammation, there are tissue resident eosinophil phenotypes with potentially longer life spans and less dependency on IL-5 for survival. Current models to study murine eosinophils ex vivo rely on IL-5-sustained expansion of eosinophils from bone marrow hematopoietic progenitors. Although it does generate eosinophils (bmEos) in high purity, such systems are short-lived (14 days on average) and depend on IL-5. In this report, we present a novel method of differentiating large numbers of pure bone marrow-derived eosinophils with a long-lived phenotype (llEos) (40 days on average) that require IL-5 for initial differentiation, but not for subsequent survival. We identified two key factors in the development of llEos: metabolic adaptation and reprogramming induced by suppressed nutrient intake during active differentiation (from Day 7 of culture), and interaction with IL-5-primed stromal cells for the remainder of the protocol. This regimen results in a higher yield and viability of mature eosinophils. Phenotypically, llEos develop as Siglec-F(+)Ly6G(+) cells transitioning to Siglec-F(+) only, and exhibit typical eosinophil features with red eosin granular staining, as well as the ability to chemotax to eotaxin Ccl11 and process fibrinogen. This culture system requires less reagent input and allows us to study eosinophils long-term, which is a significant improvement over IL-5-driven differentiation protocols. Moreover, it provides important insights into factors governing eosinophil plasticity and the ability to assume long-lived IL-5-independent phenotypes.


Assuntos
Eosinófilos/citologia , Eosinófilos/metabolismo , Interleucina-5/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Quimiotaxia , Fibrinogênio/metabolismo , Glucose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
8.
Viruses ; 13(10)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34696488

RESUMO

Respiratory syncytial virus (RSV) is a seasonal mucosal pathogen that infects the ciliated respiratory epithelium and results in the most severe morbidity in the first six months of life. RSV is a common cause of acute respiratory infection during infancy and is an important early-life risk factor strongly associated with asthma development. While this association has been repeatedly demonstrated, limited progress has been made on the mechanistic understanding in humans of the contribution of infant RSV infection to airway epithelial dysfunction. An active infection of epithelial cells with RSV in vitro results in heightened central metabolism and overall hypermetabolic state; however, little is known about whether natural infection with RSV in vivo results in lasting metabolic reprogramming of the airway epithelium in infancy. To address this gap, we performed functional metabolomics, 13C glucose metabolic flux analysis, and RNA-seq gene expression analysis of nasal airway epithelial cells (NAECs) sampled from infants between 2-3 years of age, with RSV infection or not during the first year of life. We found that RSV infection in infancy was associated with lasting epithelial metabolic reprogramming, which was characterized by (1) significant increase in glucose uptake and differential utilization of glucose by epithelium; (2) altered preferences for metabolism of several carbon and energy sources; and (3) significant sexual dimorphism in metabolic parameters, with RSV-induced metabolic changes most pronounced in male epithelium. In summary, our study supports the proposed phenomenon of metabolic reprogramming of epithelial cells associated with RSV infection in infancy and opens exciting new venues for pursuing mechanisms of RSV-induced epithelial barrier dysfunction in early life.


Assuntos
Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Pré-Escolar , Estudos de Coortes , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metabolômica/métodos , Cavidade Nasal/metabolismo , Cavidade Nasal/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/patogenicidade , Infecções Respiratórias/virologia
9.
J Leukoc Biol ; 108(1): 93-103, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170876

RESUMO

Eosinophils are often cited as playing roles in wound healing and epithelial remodeling; however, the exact triggers and mechanisms of such activity remain poorly understood. Eosinophils show the remarkable capacity to partner with coagulation, which is a highly conserved biologic system evolved to protect an organism from injury by promoting hemostasis and tissue repair. Eosinophils contribute directly by producing key factors in coagulation (tissue factor, thrombin) and fibrinolysis (plasminogen). Moreover, they have been shown to interact with other players in these cascades, such as fibrinogen and the urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system, which further promotes coagulation and fibrinolysis. Although primarily thought of in the contexts of blood clotting and vascular repair, coagulation and fibrinolytic systems play key roles within tissue, in particular during epithelial injury and remodeling. Chronic inflammation and remodeling frequently associate with pro-thrombotic and pro-coagulation state. There is a striking association between eosinophils and dysregulated coagulation in animal models and human disease. This review will examine the mechanistic links between eosinophils and the coagulation system in the context of epithelial injury and repair, as well as evidence for this interaction in heart disease, type 2 inflammatory diseases, and cancer. Collectively, multiple emerging studies summarized in this review elucidate an overlooked, but potentially fundamental, biologic mechanism to engage eosinophils in processes of epithelial injury and repair.


Assuntos
Coagulação Sanguínea , Eosinófilos/patologia , Epitélio/patologia , Cicatrização , Animais , Doença , Humanos , Modelos Biológicos
10.
Sci Rep ; 10(1): 4425, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157178

RESUMO

Type 2 immune cells and eosinophils are transiently present in the lung tissue not only in pathology (allergic disease, parasite expulsion) but also during normal postnatal development. However, the lung developmental processes underlying airway recruitment of eosinophils after birth remain unexplored. We determined that in mice, mature eosinophils are transiently recruited to the lung during postnatal days 3-14, which specifically corresponds to the primary septation/alveolarization phase of lung development. Developmental eosinophils peaked during P10-14 and exhibited Siglec-Fmed/highCD11c-/low phenotypes, similar to allergic asthma models. By interrogating the lung transcriptome and proteome during peak eosinophil recruitment in postnatal development, we identified markers that functionally capture the establishment of the mesenchymal-epithelial interface (Nes, Smo, Wnt5a, Nog) and the deposition of the provisional extracellular matrix (ECM) (Tnc, Postn, Spon2, Thbs2) as a key lung morphogenetic event associating with eosinophils. Tenascin-C (TNC) was identified as one of the key ECM markers in the lung epithelial-mesenchymal interface both at the RNA and protein levels, consistently associating with eosinophils in development and disease in mice and humans. As determined by RNA-seq analysis, naïve murine eosinophils cultured with ECM enriched in TNC significantly induced expression of Siglec-F, CD11c, eosinophil peroxidase, and other markers typical for activated eosinophils in development and allergic inflammatory responses. TNC knockout mice had an altered eosinophil recruitment profile in development. Collectively, our results indicate that lung morphogenetic processes associated with heightened Type 2 immunity are not merely a tissue "background" but specifically guide immune cells both in development and pathology.


Assuntos
Eosinófilos/fisiologia , Matriz Extracelular/fisiologia , Regulação da Expressão Gênica , Pulmão/crescimento & desenvolvimento , Pulmão/imunologia , Mesoderma/fisiologia , Animais , Eosinófilos/citologia , Perfilação da Expressão Gênica , Pulmão/metabolismo , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
J Leukoc Biol ; 104(1): 95-108, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29656559

RESUMO

Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease.


Assuntos
Eosinófilos/metabolismo , Homeostase/fisiologia , Animais , Microambiente Celular/fisiologia , Citocinas/imunologia , Citocinas/metabolismo , Eosinófilos/imunologia , Hematopoese/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA