Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33990467

RESUMO

Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs (KCNQ1+KCNE1), a slowly activating K+ current, plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage-sensing domain (VSD) of the IKs channel. Here, we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed the drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Potenciais de Ação/fisiologia , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Cães , Furanos/farmacologia , Expressão Gênica , Cobaias , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Moxifloxacina/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Potássio/metabolismo , Cultura Primária de Células , Piridinas/farmacologia , Pirimidinas/farmacologia , Sódio/metabolismo , Sulfonamidas/farmacologia , Transgenes , Xenopus laevis
2.
Artigo em Inglês | MEDLINE | ID: mdl-36721641

RESUMO

One promising approach to cancer therapeutics is to induce changes in gene expression that either reduce cancer cell proliferation or induce cancer cell death. Therefore, delivering oligonucleotides (siRNA/miRNA) that target specific genes or gene programs might have a potential therapeutic benefit. The aim of this study was to examine the potential of cell-based delivery of oligonucleotides to cancer cells via two naturally occurring intercellular pathways: gap junctions and vesicular/exosomal traffic. We utilized human mesenchymal stem cells (hMSCs) as delivery cells and chose to deliver in vitro two synthetic oligonucleotides, AllStars HS Cell Death siRNA and miR-16 mimic, as toxic (therapeutic) oligonucleotides targeting three cancer cell lines: prostate (PC3), pancreatic (PANC1) and cervical (HeLa). Both oligonucleotides dramatically reduced cell proliferation and/or induced cell death when transfected directly into target cells and delivery hMSCs. The delivery and target cells we chose express gap junction connexin 43 (Cx43) endogenously (PC3, PANC1, hMSC) or via stable transfection (HeLaCx43). Co-culture of hMSCs (transfected with either toxic oligonucleotide) with any of Cx43 expressing cancer cells induced target cell death (~20% surviving) or senescence (~85% proliferation reduction) over 96 hours. We eliminated gap junction-mediated delivery by using connexin deficient HeLaWT cells or knocking out endogenous Cx43 in PANC1 and PC3 cells via CRISPR/Cas9. Subsequently, all Cx43 deficient target cells co-cultured with the same toxic oligonucleotide loaded hMSCs proliferated, albeit at significantly slower rates, with cell number increasing on average ~2.2-fold (30% of control cells) over 96 hours. Our results show that both gap junction and vesicular/exosomal intercellular delivery pathways from hMSCs to target cancer cells deliver oligonucleotides and function to either induce cell death or significantly reduce their proliferation. Thus, hMSC-based cellular delivery is an effective method of delivering synthetic oligonucleotides that can significantly reduce tumor cell growth and should be further investigated as a possible approach to cancer therapy.

3.
Pflugers Arch ; 472(5): 561-570, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32415460

RESUMO

We previously demonstrated that a two-cell syncytium, composed of a ventricular myocyte and an mHCN2 expressing cell, recapitulated most properties of in vivo biological pacing induced by mHCN2-transfected hMSCs in the canine ventricle. Here, we use the two-cell syncytium, employing dynamic clamp, to study the roles of gf (pacemaker conductance), gK1 (background K+ conductance), and gj (intercellular coupling conductance) in biological pacing. We studied gf and gK1 in single HEK293 cells expressing cardiac sodium current channel Nav1.5 (SCN5A). At fixed gf, increasing gK1 hyperpolarized the cell and initiated pacing. As gK1 increased, rate increased, then decreased, finally ceasing at membrane potentials near EK. At fixed gK1, increasing gf depolarized the cell and initiated pacing. With increasing gf, rate increased reaching a plateau, then decreased, ceasing at a depolarized membrane potential. We studied gj via virtual coupling with two non-adjacent cells, a driver (HEK293 cell) in which gK1 and gf were injected without SCN5A and a follower (HEK293 cell), expressing SCN5A. At the chosen values of gK1 and gf oscillations initiated in the driver, when gj was increased synchronized pacing began, which then decreased by about 35% as gj approached 20 nS. Virtual uncoupling yielded similar insights into gj. We also studied subthreshold oscillations in physically and virtually coupled cells. When coupling was insufficient to induce pacing, passive spread of the oscillations occurred in the follower. These results show a non-monotonic relationship between gK1, gf, gj, and pacing. Further, oscillations can be generated by gK1 and gf in the absence of SCN5A.


Assuntos
Relógios Biológicos , Junções Comunicantes/fisiologia , Células Gigantes/fisiologia , Potenciais da Membrana , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células Gigantes/citologia , Células HEK293 , Humanos
4.
Biochim Biophys Acta Biomembr ; 1860(1): 96-101, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28690048

RESUMO

This review focuses on the biophysical properties and structure of the pore and vestibule of homotypic gap junction channels as they relate to channel permeability and selectivity. Gap junction channels are unique in their sole role to connect the cytoplasm of two adjacent cells. In general, these channels are considered to be poorly selective, possess open probabilities approximating unity, and exhibit mean open times ranging from milliseconds to seconds. These properties suggest that such channels can function as delivery pathways from cell to cell for solutes that are significantly larger than monovalent ions. We have taken quantitative data from published works concerning unitary conductance, ion flux, and permeability for homotypic connexin 43 (Cx43), Cx40, Cx26, Cx50, and Cx37, and performed a comparative analysis of conductance and/or ion/solute flux versus diffusion coefficient. The analysis of monovalent cation flux portrays the pore as equivalent to an aqueous space where hydrogen bonding and weak interactions with binding sites dominate. For larger solutes, size, shape and charge are also significant components in determining the permeation rate. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Animais , Humanos , Transporte de Íons/fisiologia
5.
Circ Res ; 116(1): 127-37, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25552692

RESUMO

Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility.


Assuntos
Sistema de Condução Cardíaco/fisiologia , Canais Iônicos/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/fisiopatologia
6.
Proc Natl Acad Sci U S A ; 110(47): 18922-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24190995

RESUMO

Gating of ion channels by ligands is fundamental to cellular function, and ATP serves as both an energy source and a signaling molecule that modulates ion channel and transporter functions. The slowly activating K(+) channel I(Ks) in cardiac myocytes is formed by KCNQ1 and KCNE1 subunits that conduct K(+) to repolarize the action potential. Here we show that intracellular ATP activates heterologously coexpressed KCNQ1 and KCNE1 as well as I(Ks) in cardiac myocytes by directly binding to the C terminus of KCNQ1 to allow the pore to open. The channel is most sensitive to ATP near its physiological concentration, and lowering ATP concentration in cardiac myocytes results in I(Ks) reduction and action potential prolongation. Multiple mutations that suppress I(Ks) by decreasing the ATP sensitivity of the channel are associated with the long QT (interval between the Q and T waves in electrocardiogram) syndrome that predisposes afflicted individuals to cardiac arrhythmia and sudden death. A cluster of basic and aromatic residues that may form a unique ATP binding site are identified; ATP activation of the wild-type channel and the effects of the mutations on ATP sensitivity are consistent with an allosteric mechanism. These results demonstrate the activation of an ion channel by intracellular ATP binding, and ATP-dependent gating allows I(Ks) to couple myocyte energy state to its electrophysiology in physiologic and pathologic conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Arritmias Cardíacas/genética , Frequência Cardíaca/fisiologia , Ativação do Canal Iônico/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Western Blotting , Fluorometria , Humanos , Mutagênese , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Análise de Sequência de DNA , Xenopus laevis
7.
Biophys J ; 106(11): 2364-74, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24896115

RESUMO

Transmural heterogeneities in Na/K pump current (IP), transient outward K(+)-current (Ito), and Ca(2+)-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradient in Ito, but the effects of A2 on IP and ICaL were unknown. In this study, myocytes were isolated from five muscle layers between epicardium and endocardium. We found a monotonic gradient in both Ip and Ito, with the lowest currents in ENDO. When AT1Rs were inhibited, EPI currents were unaffected, but ENDO currents increased, suggesting endogenous extracellular A2 inhibits both currents in ENDO. IP- and Ito-inhibition by A2 yielded essentially the same K0.5 values, so they may both be regulated by the same mechanism. A2/AT1R-mediated inhibition of IP or Ito or stimulation of ICaL persisted for hours in isolated myocytes, suggesting continuous autocrine secretion of A2 into a restricted diffusion compartment, like the T-system. Detubulation brought EPI IP to its low ENDO value and eliminated A2 sensitivity, so the T-system lumen may indeed be the restricted diffusion compartment. These studies showed that 33-50% of IP, 57-65% of Ito, and a significant fraction of ICaL reside in T-tubule membranes where they are transmurally regulated by autocrine secretion of A2 into the T-system lumen and activation of AT1Rs. Increased AT1R activation regulates each of these currents in a direction expected to increase contractility. Endogenous A2 activation of AT1Rs increases monotonically from EPI to ENDO in a manner similar to reported increases in passive tension when the ventricular chamber fills with blood. We therefore hypothesize load is the signal that regulates A2-activation of AT1Rs, which create a contractile gradient that matches the gradient in load.


Assuntos
Angiotensina II/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Função Ventricular , Potenciais de Ação , Animais , Cães , Endocárdio/citologia , Endocárdio/metabolismo , Endocárdio/fisiologia , Ventrículos do Coração/citologia , Transporte de Íons , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Pericárdio/citologia , Pericárdio/metabolismo , Pericárdio/fisiologia , Canais de Potássio/metabolismo , Sarcolema/metabolismo
8.
Cytotherapy ; 16(7): 873-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24831844

RESUMO

Electronic pacemakers are the standard therapy for bradycardia-related symptoms but have shortcomings. Over the past 15 years, experimental evidence has demonstrated that gene and cell-based therapies can create a biological pacemaker. Recently, physiologically acceptable rates have been reported with an adenovirus-based approach. However, adenovirus-based protein expression does not last more than 4 weeks, which limits its clinical applicability. Cell-based platforms are potential candidates for longer expression. Currently there are two cell-based approaches being tested: (i) mesenchymal stem cells used as a suitcase for delivering pacemaker genes and (ii) pluripotent stem cells differentiated down a cardiac lineage with endogenous pacemaker activity. This review examines the current achievements in engineering a biological pacemaker, defines the patient population for whom this device would be useful and identifies the challenges still ahead before cell therapy can replace current electronic devices.


Assuntos
Arritmias Cardíacas/terapia , Relógios Biológicos , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Adenoviridae/genética , Arritmias Cardíacas/patologia , Técnicas de Transferência de Genes , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco/citologia
9.
PLoS Comput Biol ; 9(9): e1003220, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068903

RESUMO

Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and cardiac optogenetics at the cell and organ level and provide guidance for the development of in vivo tools.


Assuntos
Luz , Modelos Biológicos , Miócitos Cardíacos/fisiologia , Channelrhodopsins , Humanos , Optogenética , Técnicas de Patch-Clamp
10.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005479

RESUMO

The cardiac KCNQ1+KCNE1 (I Ks ) channel regulates heart rhythm in both normal and stress conditions. Under stress, the ß-adrenergic stimulation elevates the intracellular cAMP level, leading to KCNQ1 phosphorylation by protein kinase A and increased I Ks , which shortens action potentials to adapt to accelerated heart rate. An impaired response to the ß-adrenergic stimulation due to KCNQ1 mutations is associated with the occurrence of a lethal congenital long QT syndrome (type 1, also known as LQT1). However, the underlying mechanism of ß-adrenergic stimulation of I Ks remains unclear, impeding the development of new therapeutics. Here we find that the unique properties of KCNQ1 channel gating with two distinct open states are key to this mechanism. KCNQ1's fully activated open (AO) state is more sensitive to cAMP than its' intermediate open (IO) state. By enhancing the AO state occupancy, the small molecules ML277 and C28 are found to effectively enhance the cAMP sensitivity of the KCNQ1 channel, independent of KCNE1 association. This finding of enhancing AO state occupancy leads to a potential novel strategy to rescue the response of I Ks to ß-adrenergic stimulation in LQT1 mutants. The success of this approach is demonstrated in cardiac myocytes and also in a high-risk LQT1 mutation. In conclusion the present study not only uncovers the key role of the AO state in I Ks channel phosphorylation, but also provides a new target for anti-arrhythmic strategy. Significance statement: The increase of I Ks potassium currents with adrenalin stimulation is important for "fight-or-flight" responses. Mutations of the IKs channel reducing adrenalin responses are associated with more lethal form of the type-1 long-QT syndrome (LQT). The alpha subunit of the IKs channel, KCNQ1 opens in two distinct open states, the intermediate-open (IO) and activated-open (AO) states, following a two-step voltage sensing domain (VSD) activation process. We found that the AO state, but not the IO state, is responsible for the adrenalin response. Modulators that specifically enhance the AO state occupancy can enhance adrenalin responses of the WT and LQT-associated mutant channels. These results reveal a mechanism of state dependent modulation of ion channels and provide an anti-arrhythmic strategy.

11.
Radiol Cardiothorac Imaging ; 6(1): e230153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358329

RESUMO

Purpose To investigate if the right ventricular (RV) systolic and left ventricular (LV) diastolic pressures can be obtained noninvasively using the subharmonic-aided pressure estimation (SHAPE) technique with Sonazoid microbubbles. Materials and Methods Individuals scheduled for a left and/or right heart catheterization were prospectively enrolled in this institutional review board-approved clinical trial from 2017 to 2020. A standard-of-care catheterization procedure was performed by advancing fluid-filled pressure catheters into the LV and aorta (n = 25) or RV (n = 22), and solid-state high-fidelity pressure catheters into the LV and aorta in a subset of participants (n = 18). Study participants received an infusion of Sonazoid microbubbles (GE HealthCare), and SHAPE data were acquired using a validated interface developed on a SonixTablet (BK Medical) US scanner, synchronously with the pressure catheter data. A conversion factor, derived using cuff-based pressure measurements with a SphygmoCor XCEL PWA (ATCOR) and subharmonic signal from the aorta, was used to convert the subharmonic signal into pressure values. Errors between the pressure measurements obtained using the SHAPE technique and pressure catheter were compared. Results The mean errors in pressure measurements obtained with the SHAPE technique relative to those of the fluid-filled pressure catheter were 1.6 mm Hg ± 1.5 [SD] (P = .85), 8.4 mm Hg ± 6.2 (P = .04), and 7.4 mm Hg ± 5.7 (P = .09) for RV systolic, LV minimum diastolic, and LV end-diastolic pressures, respectively. Relative to the measurements with the solid-state high-fidelity pressure catheter, the mean errors in LV minimum diastolic and LV end-diastolic pressures were 7.2 mm Hg ± 4.5 and 6.8 mm Hg ± 3.3 (P ≥ .44), respectively. Conclusion These results indicate that SHAPE with Sonazoid may have the potential to provide clinically relevant RV systolic and LV diastolic pressures. Keywords: Ultrasound-Contrast, Cardiac, Aorta, Left Ventricle, Right Ventricle ClinicalTrials.gov registration no.: NCT03245255 © RSNA, 2024.


Assuntos
Compostos Férricos , Ferro , Microbolhas , Óxidos , Humanos , Coração , Ventrículos do Coração
12.
Biochim Biophys Acta ; 1818(8): 2076-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21986484

RESUMO

In vivo delivery of small interfering RNAs (siRNAs) to target cells via the extracellular space has been hampered by dilution effects and immune responses. Gap junction-mediated transfer between cells avoids the extracellular space and its associated limitations. Because of these advantages cell based delivery via gap junctions has emerged as a viable alternative for siRNA or miRNA delivery. Here we discuss the advantages and disadvantages of extracellular delivery and cell to cell delivery via gap junction channels composed of connexins. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/fisiologia , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Animais , Biofísica/métodos , Comunicação Celular , Células Cultivadas , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Pinocitose , Ratos , Proteína alfa-5 de Junções Comunicantes
13.
Circulation ; 126(5): 528-36, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22753192

RESUMO

BACKGROUND: Biological pacing performed solely via HCN2 gene transfer in vivo results in relatively slow idioventricular rates and only moderate autonomic responsiveness. We induced biological pacing using the Ca(2+)-stimulated adenylyl cyclase AC1 gene expressed alone or in combination with HCN2 and compared outcomes with those with single-gene HCN2 transfer. METHODS AND RESULTS: We implanted adenoviral HCN2, AC1, or HCN2/AC1 constructs into the left bundle branches of atrioventricular-blocked dogs. During steady-state gene expression (days 5-7), differences between AC1, HCN2/AC1, and HCN2 alone were evident in basal beating rate, escape time, and dependence on electronic backup pacing. In HCN2, AC1, and HCN2/AC1, these parameters were as follows: basal beating rate: 50±1.5, 60±5.0, and 129±28.9 bpm (P<0.05 for HCN2/AC1 versus HCN2 or AC1 alone), respectively; escape time: 2.4±0.2, 1.3±0.2, and 1.1±.0.4 seconds (P<0.05 for AC1 and HCN2/AC1 versus HCN2); and percent electronic beats: 34±8%, 2±1%, and 6±2% (P<0.05 for AC1 and HCN2/AC1 versus HCN2). Instantaneous (SD1) and long-term (SD2) heart rate variability and circadian rhythm analyzed via 24-hour Holter recordings showed a shift toward greater sensitivity to parasympathetic modulation in animals injected with AC1 and a high degree of sympathetic modulation in animals injected with HCN2/AC1. CONCLUSION: AC1 or HCN2/AC1 overexpression in left bundle branches provides highly efficient biological pacing and greater sensitivity to autonomic modulation than HCN2 alone.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/fisiologia , Bloqueio Atrioventricular/terapia , Terapia Genética , Sistema de Condução Cardíaco/fisiologia , Canais Iônicos/genética , Canais Iônicos/fisiologia , Adenoviridae/genética , Animais , Bloqueio Atrioventricular/etiologia , Benzazepinas/farmacologia , Ablação por Cateter/efeitos adversos , Ritmo Circadiano/fisiologia , Cães , Eletrocardiografia , Técnicas de Transferência de Genes , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ivabradina , Modelos Animais , Bloqueadores dos Canais de Potássio/farmacologia
14.
Pflugers Arch ; 465(4): 497-507, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23224681

RESUMO

We describe the construction of a dynamic clamp with a bandwidth of >125 kHz that utilizes a high-performance, yet low-cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology and optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level MATLAB language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na(+) current (I Na) in real time and test its accuracy and stability using rate constants appropriate for 37 °C. We then construct a program capable of supplying three currents to a cell preparation: I Na, the hyperpolarizing-activated inward pacemaker current (I f) and an inward-rectifier K(+) current (I K1). The program corrects for the IR drop due to electrode current flow and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na(+) spikes in otherwise passive cells.


Assuntos
Potenciais de Ação , Temperatura Alta , Técnicas de Patch-Clamp/métodos , Sódio/metabolismo , Algoritmos , Células HEK293 , Humanos , Transporte de Íons , Potenciais da Membrana , Potássio/metabolismo
15.
JACC Cardiovasc Imaging ; 16(2): 224-235, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36648035

RESUMO

BACKGROUND: Noninvasive and accurate assessment of intracardiac pressures has remained an elusive goal of noninvasive cardiac imaging. OBJECTIVES: The purpose of this study was to investigate if errors in intracardiac pressures obtained noninvasively using contrast microbubbles and the subharmonic-aided pressure estimation (SHAPE) technique are <5 mm Hg. METHODS: In a nonrandomized institutional review board-approved clinical trial (NCT03243942), patients scheduled for a left-sided and/or right-sided heart catheterization procedure and providing written informed consent were included. A standard-of-care catheterization procedure was performed advancing clinically used pressure catheters into the left and/or right ventricles and/or the aorta. After pressure catheter placement, patients received an infusion of Definity microbubbles (n = 56; 2 vials diluted in 50 mL of saline; infusion rate: 4-10 mL/min) (Lantheus Medical Imaging). Then SHAPE data was acquired using a validated interface developed on a SonixTablet scanner (BK Medical Systems) synchronously with the pressure catheter data. A conversion factor (mm Hg/dB) was derived from SHAPE data and measurements with a SphygmoCor XCEL PWA device (ATCOR Medical) and was combined with SHAPE data from the left and/or the right ventricles to obtain clinically relevant systolic and diastolic ventricular pressures. RESULTS: The mean value of absolute errors for left ventricular minimum and end diastolic pressures were 2.9 ± 2.0 and 1.7 ± 1.2 mm Hg (n = 26), respectively, and for right ventricular systolic pressures was 2.2 ± 1.5 mm Hg (n = 11). Two adverse events occurred during Definity infusion; both were resolved. CONCLUSIONS: These results indicate that the SHAPE technique with Definity microbubbles is encouragingly efficacious for obtaining intracardiac pressures noninvasively and accurately. (Noninvasive, Subharmonic Intra-Cardiac Pressure Measurement; NCT03243942).


Assuntos
Meios de Contraste , Microbolhas , Humanos , Ultrassonografia/métodos , Valor Preditivo dos Testes , Cateterismo Cardíaco/efeitos adversos
16.
J Cardiovasc Pharmacol ; 60(1): 88-99, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526298

RESUMO

The voltage-gated Na+ channel is a critical determinant of the action potential (AP) upstroke. Increasing Na+ conductance may speed AP propagation. In this study, we propose use of the skeletal muscle Na+ channel SkM1 as a more favorable gene than the cardiac isoform SCN5A to enhance conduction velocity in depolarized cardiac tissue. We used cells that electrically coupled with cardiac myocytes as a delivery platform to introduce the Na+ channels. Human embryonic kidney 293 cells were stably transfected with SkM1 or SCN5A. SkM1 had a more depolarized (18 mV shift) inactivation curve than SCN5A. We also found that SkM1 recovered faster from inactivation than SCN5A. When coupled with SkM1 expressing cells, cultured myocytes showed an increase in the dV/dtmax of the AP. Expression of SCN5A had no such effect. In an in vitro cardiac syncytium, coculture of neonatal cardiac myocytes with SkM1 expressing but not SCN5A expressing cells significantly increased the conduction velocity under both normal and depolarized conditions. In an in vitro reentry model induced by high-frequency stimulation, expression of SkM1 also enhanced angular velocity of the induced reentry. These results suggest that cells carrying a Na+ channel with a more depolarized inactivation curve can improve cardiac excitability and conduction in depolarized tissues.


Assuntos
Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação , Animais , Animais Recém-Nascidos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cães , Feminino , Terapia Genética/métodos , Células HEK293 , Sistema de Condução Cardíaco/metabolismo , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transfecção
17.
Am J Hypertens ; 35(5): 397-406, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35079778

RESUMO

BACKGROUND: This study compared aortic pressures estimated using a SphygmoCor XCEL PWA device (ATCOR, Naperville, IL) noninvasively with aortic pressures obtained using pressure catheters during catheterization procedures and analyzed the impact of a linear-fit function on the estimated pressure values. METHODS: One hundred and thirty-six patients scheduled for cardiac catheterization procedure were enrolled in IRB approved studies. Catheterization procedures were performed according to standard-of-care to acquire aortic pressure measurements. Immediately after the catheterization procedure with the pressure catheters removed, while the patients were still in the catheterization laboratory, central aortic pressures were estimated with the SphygmoCor device (using its inbuilt transfer function). The error between measured and estimated aortic pressures was evaluated using Bland-Altman analysis (n = 93). A linear-fit was performed between the measured and estimated pressures, and using the linear equation the error measurements were repeated. A bootstrap analysis was performed to test the generalizability of the linear-fit function. In a subset of cases (n = 13), central aortic pressure values were also obtained using solid-state high-fidelity catheters (Millar, Houston, TX), and the error measurements were repeated. RESULTS: The magnitude of errors between the measured and estimated aortic pressures (mean errors >6.4 mm Hg; mean errors >8.0 mm Hg in the subset) were reduced to less than 1 mm Hg after using the linear-fit function derived in this study. CONCLUSIONS: For the population examined in this study, the SphygmoCor data must be used with the linear-fit function to obtain aortic pressures that are comparable to the measurements obtained using pressure catheters. CLINICAL TRIALS REGISTRATION: Trial Numbers NCT03243942 and NCT03245255.


Assuntos
Pressão Arterial , Determinação da Pressão Arterial , Pressão Sanguínea , Determinação da Pressão Arterial/métodos , Cateterismo Cardíaco , Catéteres , Humanos
18.
J Cardiovasc Pharmacol ; 58(4): 439-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21753738

RESUMO

Diabetes is associated with an increased risk of heart failure and the development of a cardiomyopathy whose etiology is only partially understood. Ca entry through the voltage-dependent L-type Ca channel CaV1.2 initiates the contractile cycle in cardiac myocytes. Decreased cardiac contractility and depressed CaV1.2 function have been reported in obese type 2 diabetic db/db mice. Here, we demonstrate that a reduction in phosphoinositide 3-kinase (PI3K) signaling is a major contributor to the altered function of CaV1.2 in db/db cardiac myocytes. Using the whole-cell patch clamp technique, we determined that intracellular infusion of cardiac myocytes from db/db mice with phosphatidylinositol 3,4,5-trisphosphate (PIP3), the second messenger produced by PI3K, increased the L-type Ca current (ICa,L) density nearly to the level seen in wild-type cells. PIP3 also reversed the positive shift in the voltage dependence of the steady-state current activation observed in db/db myocytes. Infusion of protein kinases that act downstream of PI3K also affected ICa,L. Akt1 and Akt2 were as effective as PIP3 in restoring the ICa,L density in db/db myocytes but did not affect the voltage dependence of current activation. The infusion of atypical PKC-ι (the human homolog of mouse PKC-λ) caused a small but significant increase in the ICa,L density and completely reversed the shift in voltage dependence of steady-state current activation. These results indicate that a defect in PI3K/PIP3/Akt/PKC-λ signaling is mainly responsible for the depressed CaV1.2 function in the hearts of db/db mice with type 2 diabetes.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diabetes Mellitus Experimental/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais
19.
Circulation ; 120(4): 318-25, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19597047

RESUMO

BACKGROUND: Phosphoinositide 3-kinase (PI3K) p110alpha plays a key role in insulin action and tumorigenesis. Myocyte contraction is initiated by an inward Ca(2+) current (I(Ca,L)) through the voltage-dependent L-type Ca(2+) channel (LTCC). The aim of this study was to evaluate whether p110alpha also controls cardiac contractility by regulating the LTCC. METHODS AND RESULTS: Genetic ablation of p110alpha (also known as Pik3ca), but not p110beta (also known as Pik3cb), in cardiac myocytes of adult mice reduced I(Ca,L) and blocked insulin signaling in the heart. p110alpha-null myocytes had a reduced number of LTCCs on the cell surface and a contractile defect that decreased cardiac function in vivo. Similarly, pharmacological inhibition of p110alpha decreased I(Ca,L) and contractility in canine myocytes. Inhibition of p110beta did not reduce I(Ca,L). CONCLUSIONS: PI3K p110alpha but not p110beta regulates the LTCC in cardiac myocytes. Decreased signaling to p110alpha reduces the number of LTCCs on the cell surface and thus attenuates I(Ca,L) and contractility.


Assuntos
Contração Miocárdica/genética , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/fisiologia , Classe I de Fosfatidilinositol 3-Quinases , Cães , Feminino , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/fisiologia
20.
Circulation ; 119(1): 19-27, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19103989

RESUMO

BACKGROUND: In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel (SCN5A) is largely inactivated, contributing to low action potential upstroke velocity (V(max)), slow conduction, and reentry. We hypothesized that a fast inward current such as the skeletal muscle sodium channel (SkM1) operating more effectively at depolarized membrane potentials might restore fast conduction in epicardial border zones and be antiarrhythmic. METHODS AND RESULTS: Computer simulations were done with a modified Hund-Rudy model. Canine myocardial infarcts were created by coronary ligation. Adenovirus expressing SkM1 and green fluorescent protein or green fluorescent protein alone (sham) was injected into epicardial border zones. After 5 to 7 days, dogs were studied with epicardial mapping, programmed premature stimulation in vivo, and cellular electrophysiology in vitro. Infarct size was determined, and tissues were immunostained for SkM1 and green fluorescent protein. In the computational model, modest SkM1 expression preserved fast conduction at potentials as positive as -60 mV; overexpression of SCN5A did not. In vivo epicardial border zone electrograms were broad and fragmented in shams (31.5 +/- 2.3 ms) and narrower in SkM1 (22.6 +/- 2.8 ms; P=0.03). Premature stimulation induced ventricular tachyarrhythmia/fibrillation >60 seconds in 6 of 8 shams versus 2 of 12 SkM1 (P=0.02). Microelectrode studies of epicardial border zones from SkM1 showed membrane potentials equal to that of shams and V(max) greater than that of shams as membrane potential depolarized (P<0.01). Infarct sizes were similar (sham, 30 +/- 2.8%; SkM1, 30 +/- 2.6%; P=0.86). SkM1 expression in injected epicardium was confirmed immunohistochemically. CONCLUSIONS: SkM1 increases V(max) of depolarized myocardium and reduces the incidence of inducible sustained ventricular tachyarrhythmia/fibrillation in canine infarcts. Gene therapy to normalize activation by increasing V(max) at depolarized potentials may be a promising antiarrhythmic strategy.


Assuntos
Terapia Genética/métodos , Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Canais de Sódio/genética , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/terapia , Potenciais de Ação/fisiologia , Adenoviridae/genética , Animais , Linhagem Celular , Simulação por Computador , Modelos Animais de Doenças , Cães , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Humanos , Técnicas In Vitro , Rim/citologia , Masculino , Músculo Esquelético/fisiologia , Contração Miocárdica/fisiologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Canal de Sódio Disparado por Voltagem NAV1.5 , Penicilina G/metabolismo , Pericárdio/fisiologia , Canais de Sódio/metabolismo , Canais de Sódio/fisiologia , Taquicardia Ventricular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA