RESUMO
It is increasingly evident that the association of glycans with the prion protein (PrP), a major post-translational modification, significantly impacts the pathogenesis of prion diseases. A recent bioassay study has provided evidence that the presence of PrP glycans decreases spongiform degeneration and disease-related PrP (PrPD) deposition in a murine model. We challenged (PRNPN181Q/197Q) transgenic (Tg) mice expressing glycan-free human PrP (TgGlyc-), with isolates from sporadic Creutzfeldt-Jakob disease subtype MM2 (sCJDMM2), sporadic fatal insomnia and familial fatal insomnia, three human prion diseases that are distinct but share histotypic and PrPD features. TgGlyc- mice accurately replicated the basic histotypic features associated with the three diseases but the transmission was characterized by high attack rates, shortened incubation periods and a greatly increased severity of the histopathology, including the presence of up to 40 times higher quantities of PrPD that formed prominent deposits. Although the engineered protease-resistant PrPD shared at least some features of the secondary structure and the presence of the anchorless PrPD variant with the wild-type PrPD, it exhibited different density gradient profiles of the PrPD aggregates and a higher stability index. The severity of the histopathological features including PrP deposition appeared to be related to the incubation period duration. These findings are clearly consistent with the protective role of the PrP glycans but also emphasize the complexity of the conformational changes that impact PrPD following glycan knockout. Future studies will determine whether these features apply broadly to other human prion diseases or are PrPD-type dependent.
Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Camundongos , Animais , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Doenças Priônicas/metabolismo , Príons/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Camundongos Transgênicos , PolissacarídeosRESUMO
Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.
Assuntos
Síndrome de Creutzfeldt-Jakob , Mutação em Linhagem Germinativa , Proteínas Priônicas , Humanos , Proteínas Priônicas/genética , Masculino , Feminino , Idoso , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa/genética , Encéfalo/patologia , Idoso de 80 Anos ou mais , Doenças Priônicas/genética , Doenças Priônicas/patologia , MutaçãoRESUMO
The presence of amyloid kuru plaques is a pathological hallmark of sporadic Creutzfeldt-Jakob disease (sCJD) of the MV2K subtype. Recently, PrP plaques (p) have been described in the white matter of a small group of CJD (p-CJD) cases with the 129MM genotype and carrying resPrPD type 1 (T1). Despite the different histopathological phenotype, the gel mobility and molecular features of p-CJD resPrPD T1 mimic those of sCJDMM1, the most common human prion disease. Here, we describe the clinical features, histopathology, and molecular properties of two distinct PrP plaque phenotypes affecting the gray matter (pGM) or the white matter (pWM) of sCJD cases with the PrP 129MM genotype (sCJDMM). Prevalence of pGM- and pWM-CJD proved comparable and was estimated to be ~ 0.6% among sporadic prion diseases and ~ 1.1% among the sCJDMM group. Mean age at onset (61 and 68 years) and disease duration (~ 7 months) of pWM- and pGM-CJD did not differ significantly. PrP plaques were mostly confined to the cerebellar cortex in pGM-CJD, but were ubiquitous in pWM-CJD. Typing of resPrPD T1 showed an unglycosylated fragment of ~ 20 kDa (T120) in pGM-CJD and sCJDMM1 patients, while a doublet of ~ 21-20 kDa (T121-20) was a molecular signature of pWM-CJD in subcortical regions. In addition, conformational characteristics of pWM-CJD resPrPD T1 differed from those of pGM-CJD and sCJDMM1. Inoculation of pWM-CJD and sCJDMM1 brain extracts to transgenic mice expressing human PrP reproduced the histotype with PrP plaques only in mice challenged with pWM-CJD. Furthermore, T120 of pWM-CJD, but not T121, was propagated in mice. These data suggest that T121 and T120 of pWM-CJD, and T120 of sCJDMM1 are distinct prion strains. Further studies are required to shed light on the etiology of p-CJD cases, particularly those of T120 of the novel pGM-CJD subtype.
Assuntos
Síndrome de Creutzfeldt-Jakob , Príons , Humanos , Camundongos , Animais , Síndrome de Creutzfeldt-Jakob/patologia , Encéfalo/patologia , Príons/metabolismo , Genótipo , Camundongos Transgênicos , Códon , Placa Amiloide/patologia , Proteínas Priônicas/metabolismoRESUMO
OBJECTIVE: To investigate the incidence of corticotroph hyperplasia (CH) or lymphocyte infiltration in the pituitary of patients with obesity. METHODS: The pituitary and adrenal glands from 161 adult autopsies performed between 2010 and 2019 at our institution were reviewed. The clinical history, body mass index (BMI), and cause of death were recorded. Routine hematoxylin and eosin staining, reticulin staining, and immunohistochemical staining for adrenocorticotropic hormone, CD3, and CD20 were performed. The results were analyzed using the Fisher and chi-square statistics. Decedents were separated into 4 groups based on BMI (kg/m2): (1) lean (BMI, <25.0), (2) overweight (BMI, 25.0-29.9), (3) obesity class I (BMI, 30.0-34.9), and (4) obesity classes II to III (BMI, >34.9). RESULTS: CH/neoplasia was identified in 44 of 161 pituitary glands. Four (9.1%) of 53 lean patients had pituitary lesions, whereas 27.3% (12) of overweight, 22.7% (10) of obesity class I, and 40.9% (18) of obesity class II patients had hyperplasia (P < .0001). Small corticotroph tumors were identified in 15 patients; only 1 was a lean patient, and the tumor was associated with the Crooke hyaline change of nontumorous corticotrophs. The presence of CH and neoplasia was associated with adrenal cortical hyperplasia and lipid depletion. Microscopic foci of T and B lymphocytes were identified in the pituitaries of patients in each weight category; no independent association between BMI and lymphocyte inflammation was found. CONCLUSION: Our data indicate an association between CH/neoplasia and obesity. It remains unclear whether obesity is the cause or effect of adrenocorticotropic hormone and cortisol excess.
Assuntos
Obesidade Mórbida , Doenças da Hipófise , Neoplasias Hipofisárias , Adulto , Humanos , Corticotrofos/metabolismo , Corticotrofos/patologia , Obesidade Mórbida/patologia , Hiperplasia/patologia , Sobrepeso/complicações , Sobrepeso/epidemiologia , Hipófise/patologia , Hormônio Adrenocorticotrópico/metabolismo , Doenças da Hipófise/complicações , Doenças da Hipófise/epidemiologia , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/epidemiologia , Neoplasias Hipofisárias/patologia , Obesidade/complicações , Obesidade/epidemiologiaRESUMO
INTRODUCTION: Sporadic Creutzfeldt-Jakob disease (sCJD) comprises multiple subtypes (MM1, MM2, MV1, MV2C, MV2K, VV1, and VV2) with distinct disease durations and spatiotemporal cascades of brain lesions. Our goal was to establish the ante mortem diagnosis of sCJD subtype, based on patient-specific estimates of the spatiotemporal cascade of lesions detected by diffusion-weighted magnetic resonance imaging (DWI). METHODS: We included 488 patients with autopsy-confirmed diagnosis of sCJD subtype and 50 patients with exclusion of prion disease. We applied a discriminative event-based model (DEBM) to infer the spatiotemporal cascades of lesions, derived from the DWI scores of 12 brain regions assigned by three neuroradiologists. Based on the DEBM cascades and the prion protein genotype at codon 129, we developed and validated a novel algorithm for the diagnosis of the sCJD subtype. RESULTS: Cascades of MM1, MM2, MV1, MV2C, and VV1 originated in the parietal cortex and, following subtype-specific orderings of propagation, went toward the striatum, thalamus, and cerebellum; conversely, VV2 and MV2K cascades showed a striatum-to-cortex propagation. The proposed algorithm achieved 76.5% balanced accuracy for the sCJD subtype diagnosis, with low rater dependency (differences in accuracy of ± 1% among neuroradiologists). DISCUSSION: Ante mortem diagnosis of sCJD subtype is feasible with this novel data-driven approach, and it may be valuable for patient prognostication, stratification in targeted clinical trials, and future therapeutics. HIGHLIGHTS: Subtype diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is achievable with diffusion MRI. Cascades of diffusion MRI abnormalities in the brain are subtype-specific in sCJD. We proposed a diagnostic algorithm based on cascades of diffusion MRI abnormalities and demonstrated that it is accurate. Our method may aid early diagnosis, prognosis, stratification in clinical trials, and future therapeutics. The present approach is applicable to other neurodegenerative diseases, enhancing the differential diagnoses.
Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/patologiaRESUMO
Amyloid beta (Aß) deposition in the neocortex is a major hallmark of Alzheimer's disease (AD), but the extent of deposition does not readily explain phenotypic diversity and rate of disease progression. The prion strain-like model of disease heterogeneity suggests the existence of different conformers of Aß. We explored this paradigm using conformation-dependent immunoassay (CDI) for Aß and conformation-sensitive luminescent conjugated oligothiophenes (LCOs) in AD cases with variable progression rates. Mapping the Aß conformations in the frontal, occipital, and temporal regions in 20 AD patients with CDI revealed extensive interindividual and anatomical diversity in the structural organization of Aß with the most significant differences in the temporal cortex of rapidly progressive AD. The fluorescence emission spectra collected in situ from Aß plaques in the same regions demonstrated considerable diversity of spectral characteristics of two LCOs-quatroformylthiophene acetic acid and heptaformylthiophene acetic acid. Heptaformylthiophene acetic acid detected a wider range of Aß deposits, and both LCOs revealed distinct spectral attributes of diffuse and cored plaques in the temporal cortex of rapidly and slowly progressive AD and less frequent and discernible differences in the frontal and occipital cortex. These and CDI findings indicate a major conformational diversity of Aß accumulating in the neocortex, with the most notable differences in temporal cortex of cases with shorter disease duration, and implicate distinct Aß conformers (strains) in the rapid progression of AD.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neocórtex/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/patologia , Humanos , Masculino , Neocórtex/patologia , Placa Amiloide/patologiaRESUMO
OBJECTIVE: Sporadic Creutzfeldt-Jakob disease (sCJD) comprises several subtypes as defined by genetic and prion protein characteristics, which are associated with distinct clinical and pathological phenotypes. To date, no clinical test can reliably diagnose the subtype. We established two procedures for the antemortem diagnosis of sCJD subtype using diffusion magnetic resonance imaging (MRI). METHODS: MRI of 1,458 patients referred to the National Prion Disease Pathology Surveillance Center were collected through its consultation service. One neuroradiologist blind to the diagnosis scored 12 brain regions and generated a lesion profile for each MRI scan. We selected 487 patients with autopsy-confirmed diagnosis of "pure" sCJD subtype and at least one positive diffusion MRI examination. We designed and tested two data-driven procedures for subtype diagnosis: the first procedure-prion subtype classification algorithm with MRI (PriSCA_MRI)-uses only MRI examinations; the second-PriSCA_MRI + Gen-includes knowledge of the prion protein codon 129 genotype, a major determinant of sCJD subtypes. Both procedures were tested on the first MRI and the last MRI follow-up. RESULTS: PriSCA_MRI classified the 3 most prevalent subtypes with 82% accuracy. PriSCA_MRI + Gen raised the accuracy to 89% and identified all subtypes. Individually, the 2 most prevalent sCJD subtypes, MM1 and VV2, were diagnosed with sensitivities up to 95 and 97%, respectively. The performances of both procedures did not change in 168 patients with longitudinal MRI studies when the last examination was used. INTERPRETATION: This study provides the first practical algorithms for antemortem diagnosis of sCJD subtypes. MRI diagnosis of subtype is likely to be attainable at early disease stages to prognosticate clinical course and design future therapeutic trials. ANN NEUROL 2021;89:560-572.
Assuntos
Encéfalo/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Proteínas Priônicas/genética , Idoso , Síndrome de Creutzfeldt-Jakob/classificação , Síndrome de Creutzfeldt-Jakob/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Sporadic Creutzfeldt-Jakob disease (sCJD) is a transmissible brain proteinopathy. Five main clinicopathological subtypes (sCJD-MM(V)1, -MM(V)2C, -MV2K, -VV1, and -VV2) are currently distinguished. Histopathological evidence suggests that the localisation of prion aggregates and spongiform lesions varies among subtypes. Establishing whether there is an initial site with detectable imaging abnormalities (epicentre) and an order of lesion propagation would be informative for disease early diagnosis, patient staging, management and recruitment in clinical trials. Diffusion magnetic resonance imaging (MRI) is the most-used and most-sensitive test to detect spongiform degeneration. This study was designed to identify, in vivo and for the first time, subtype-dependent epicentre and lesion propagation in the brain using diffusion-weighted images (DWI), in the largest known cross-sectional dataset of autopsy-proven subjects with sCJD. We estimate lesion propagation by cross-sectional DWI using event-based modelling, a well-established data-driven technique. DWI abnormalities of 594 autopsy-diagnosed subjects (448 patients with sCJD) were scored in 12 brain regions by 1 neuroradiologist blind to the diagnosis. We used the event-based model to reconstruct sequential orderings of lesion propagation in each of five pure subtypes. Follow-up data from 151 patients validated the estimated sequences. Results showed that epicentre and ordering of lesion propagation are subtype specific. The two most common subtypes (-MM1 and -VV2) showed opposite ordering of DWI abnormality appearance: from the neocortex to subcortical regions, and vice versa, respectively. The precuneus was the most likely epicentre also in -MM2 and -VV1 although at variance with -MM1, abnormal signal was also detected early in cingulate and insular cortices. The caudal-rostral sequence of lesion propagation that characterises -VV2 was replicated in -MV2K. Combined, these data-driven models provide unprecedented dynamic insights into subtype-specific epicentre at onset and propagation of the pathologic process, which may also enhance early diagnosis and enable disease staging in sCJD.
Assuntos
Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/patologia , Proteínas Priônicas/metabolismo , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Cofactors are essential for driving recombinant prion protein into pathogenic conformers. Polyanions promote prion aggregation in vitro, yet the cofactors that modulate prion assembly in vivo remain largely unknown. Here we report that the endogenous glycosaminoglycan, heparan sulfate (HS), impacts prion propagation kinetics and deposition sites in the brain. Exostosin-1 haploinsufficient (Ext1+/-) mice, which produce short HS chains, show a prolonged survival and a redistribution of plaques from the parenchyma to vessels when infected with fibrillar prions, and a modest delay when infected with subfibrillar prions. Notably, the fibrillar, plaque-forming prions are composed of ADAM10-cleaved prion protein lacking a glycosylphosphatidylinositol anchor, indicating that these prions are mobile and assemble extracellularly. By analyzing the prion-bound HS using liquid chromatography-mass spectrometry (LC-MS), we identified the disaccharide signature of HS differentially bound to fibrillar compared to subfibrillar prions, and found approximately 20-fold more HS bound to the fibrils. Finally, LC-MS of prion-bound HS from human patients with familial and sporadic prion disease also showed distinct HS signatures and higher HS levels associated with fibrillar prions. This study provides the first in vivo evidence of an endogenous cofactor that accelerates prion disease progression and enhances parenchymal deposition of ADAM10-cleaved, mobile prions.
Assuntos
Proteína ADAM10/metabolismo , Heparitina Sulfato/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , CamundongosRESUMO
Inclusion body myositis (IBM) is the most common cause of primary myopathy in individuals aged 50 years and over, and is pathologically characterized by protein aggregates of p62 and mislocalized cytoplasmic TDP-43, as well as mitochondrial abnormalities in affected muscle fibers. Our recent studies have shown the accumulation of TDP-43 in mitochondria in neurons from patients with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD), and revealed mitochondria as critical mediators of TDP-43 neurotoxicity. In this study, we investigated the association between mitochondria and TDP-43 in biopsied skeletal muscle samples from IBM patients. We found that IBM pathological markers TDP-43, phosphorylated TDP-43, and p62 all coexisted with intensively stained key subunits of mitochondrial oxidative phosphorylation complexes I-V in the same skeletal muscle fibers of patients with IBM. Further immunoblot analysis showed increased levels of TDP-43, truncated TDP-43, phosphorylated TDP-43, and p62, but decreased levels of key subunits of mitochondrial oxidative phosphorylation complexes I and III in IBM patients compared to aged matched control subjects. This is the first demonstration of the close association of TDP-43 accumulation with mitochondria in degenerating muscle fibers in IBM and this association may contribute to the development of mitochondrial dysfunction and pathological protein aggregates.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitocôndrias Musculares/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Prion disease research and surveillance can be challenging due to the disease's difficulty to diagnose, rapid progression, and geographic dispersion. Improving accessibility through teleneurology could improve the ability to conduct these activities. OBJECTIVES: The aim of this study was to determine the feasibility of conducting teleneurology assessments for research and surveillance of prion diseases. METHOD: Participants were offered in-person visit, medical record review, or teleneurology assessment. Standardized histories and assessments evaluating cognition, functional ability, and neuropsychiatric symptoms were collected. Data regarding participants' satisfaction with teleneurology were collected. RESULTS: From April 2017 to July 2018, the study received 114 referrals. 45 and 5 participants consented for the teleneurology and medical record review arms of the study, respectively. 29 subjects participated in at least one teleneurology visit. Participants expressed satisfaction with teleneurology and found it easy to participate. Some aspects of the examination were hindered or interrupted due to technological reasons. CONCLUSIONS: We demonstrate the feasibility and preference of teleneurology as a modality in which subjects with prion disease can partake in clinical research. Technological aspects sometimes interfered with research assessments.
Assuntos
Cognição , Síndrome de Creutzfeldt-Jakob , Exame Neurológico/métodos , Doenças Priônicas , Consulta Remota/métodos , Idoso , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/psicologia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Anamnese/métodos , Pessoa de Meia-Idade , Testes Neuropsicológicos , Satisfação do Paciente , Desempenho Físico Funcional , Doenças Priônicas/diagnóstico , Doenças Priônicas/psicologia , Reprodutibilidade dos TestesRESUMO
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence â¼ 7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Exoma , Genoma Humano , Glioblastoma/genética , Glioblastoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Evolução Clonal/genética , Variações do Número de Cópias de DNA , Metilação de DNA , Genômica/métodos , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Pessoa de Meia-Idade , Mutação , Taxa de Mutação , Gradação de Tumores , Recidiva Local de Neoplasia , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto JovemRESUMO
OBJECTIVE: Several prion amplification systems have been proposed for detection of prions in cerebrospinal fluid (CSF), most recently, the measurements of prion seeding activity with second-generation real-time quaking-induced conversion (RT-QuIC). The objective of this study was to investigate the diagnostic performance of the RT-QuIC prion test in the broad phenotypic spectrum of prion diseases. METHODS: We performed CSF RT-QuIC testing in 2,141 patients who had rapidly progressive neurological disorders, determined diagnostic sensitivity and specificity in 272 cases that were autopsied, and evaluated the impact of mutations and polymorphisms in the PRNP gene, and type 1 or type 2 human prions on diagnostic performance. RESULTS: The 98.5% diagnostic specificity and 92% sensitivity of CSF RT-QuIC in a blinded retrospective analysis matched the 100% specificity and 95% sensitivity of a blind prospective study. The CSF RT-QuIC differentiated 94% of cases of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 from the sCJD MM2 phenotype, and 80% of sCJD VV2 from sCJD VV1. The mixed prion type 1-2 and cases heterozygous for codon 129 generated intermediate CSF RT-QuIC patterns, whereas genetic prion diseases revealed distinct profiles for each PRNP gene mutation. INTERPRETATION: The diagnostic performance of the improved CSF RT-QuIC is superior to surrogate marker tests for prion diseases such as 14-3-3 and tau proteins, and together with PRNP gene sequencing the test allows the major prion subtypes to be differentiated in vivo. This differentiation facilitates prediction of the clinicopathological phenotype and duration of the disease-two important considerations for envisioned therapeutic interventions. ANN NEUROL 2017;81:79-92.
Assuntos
Doenças Priônicas/líquido cefalorraquidiano , Doenças Priônicas/diagnóstico , Proteínas Priônicas/líquido cefalorraquidiano , Idoso , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Valor Preditivo dos Testes , Doenças Priônicas/genética , Proteínas Priônicas/genética , Prognóstico , Sensibilidade e EspecificidadeRESUMO
The infectious pathogen responsible for prion diseases is the misfolded, aggregated form of the prion protein, PrPSc. In contrast to recent progress in studies of laboratory rodent-adapted prions, current understanding of the molecular basis of human prion diseases and, especially, their vast phenotypic diversity is very limited. Here, we have purified proteinase resistant PrPSc aggregates from two major phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD), determined their conformational stability and replication tempo in vitro, as well as characterized structural organization using recently emerged approaches based on hydrogen/deuterium (H/D) exchange coupled with mass spectrometry. Our data clearly demonstrate that these phenotypically distant prions differ in a major way with regard to their structural organization, both at the level of the polypeptide backbone (as indicated by backbone amide H/D exchange data) as well as the quaternary packing arrangements (as indicated by H/D exchange kinetics for histidine side chains). Furthermore, these data indicate that, in contrast to previous observations on yeast and some murine prion strains, the replication rate of sCJD prions is primarily determined not by conformational stability but by specific structural features that control the growth rate of prion protein aggregates.
Assuntos
Síndrome de Creutzfeldt-Jakob , Proteínas PrPSc/química , Western Blotting , Humanos , Imunoensaio , Espectrometria de Massas , Fenótipo , Estabilidade Proteica , Estrutura Quaternária de ProteínaRESUMO
Creutzfeldt-Jakob disease (CJD) and other prion diseases are rapidly progressive spongiform encephalopathies that are invariably fatal. Clinical features and magnetic resonance imaging, electroencephalogram, and cerebrospinal fluid abnormalities may suggest prion disease, but a definitive diagnosis can only be made by means of neuropathologic examination. Fluorodeoxyglucose positron emission tomography (FDG-PET) is not routinely used to evaluate patients with suspected prion disease. This study includes 11 cases of definite prion disease in which FDG-PET scans were obtained. There were 8 sporadic CJD cases, 2 genetic CJD cases, and 1 fatal familial insomnia case. Automated FDG-PET analysis revealed parietal region hypometabolism in all cases. Surprisingly, limbic and mesolimbic hypermetabolism were also present in the majority of cases. When FDG-PET hypometabolism was compared with neuropathologic changes (neuronal loss, astrocytosis, spongiosis), hypometabolism was predictive of neuropathology in 80.6% of cortical regions versus 17.6% of subcortical regions. The odds of neuropathologic changes were 2.1 times higher in cortical regions than subcortical regions (P=0.0265). A similar discordance between cortical and subcortical regions was observed between FDG-PET hypometabolism and magnetic resonance imaging diffusion weighted imaging hyperintensity. This study shows that there may be a relationship between FDG-PET hypometabolism and neuropathology in cortical regions in prion disease but it is unlikely to be helpful for diagnosis.
Assuntos
Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/patologia , Fluordesoxiglucose F18/farmacocinética , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Síndrome de Creutzfeldt-Jakob/classificação , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos RadiofarmacêuticosRESUMO
Genetic and environmental factors that increase the risk of late-onset Alzheimer disease are now well recognized but the cause of variable progression rates and phenotypes of sporadic Alzheimer's disease is largely unknown. We aimed to investigate the relationship between diverse structural assemblies of amyloid-ß and rates of clinical decline in Alzheimer's disease. Using novel biophysical methods, we analysed levels, particle size, and conformational characteristics of amyloid-ß in the posterior cingulate cortex, hippocampus and cerebellum of 48 cases of Alzheimer's disease with distinctly different disease durations, and correlated the data with APOE gene polymorphism. In both hippocampus and posterior cingulate cortex we identified an extensive array of distinct amyloid-ß42 particles that differ in size, display of N-terminal and C-terminal domains, and conformational stability. In contrast, amyloid-ß40 present at low levels did not form a major particle with discernible size, and both N-terminal and C- terminal domains were largely exposed. Rapidly progressive Alzheimer's disease that is associated with a low frequency of APOE e4 allele demonstrates considerably expanded conformational heterogeneity of amyloid-ß42, with higher levels of distinctly structured amyloid-ß42 particles composed of 30-100 monomers, and fewer particles composed of < 30 monomers. The link between rapid clinical decline and levels of amyloid-ß42 with distinct structural characteristics suggests that different conformers may play an important role in the pathogenesis of distinct Alzheimer's disease phenotypes. These findings indicate that Alzheimer's disease exhibits a wide spectrum of amyloid-ß42 structural states and imply the existence of prion-like conformational strains.
Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Progressão da Doença , Fragmentos de Peptídeos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de TempoRESUMO
Young onset dementias present significant diagnostic challenges. We present the case of a 35-year-old Kuwaiti man with social withdrawal, drowsiness, irritability, anxiety, aphasia, memory loss, hypereflexia, and Parkinsonism. Brain MRI showed bilateral symmetric gradient echo hypointensities in the globi pallidi and substantiae nigrae. Left cortical hypometabolism was seen on brain fluorodeoxyglucose positron emission tomography. A cortical brain biopsy revealed a high Lewy body burden. Genetic testing revealed a homozygous p.T11M mutation in the C19orf12 gene consistent with mitochondrial membrane protein-associated neurodegeneration. This is the oldest onset age of MPAN reported.
Assuntos
Proteínas Mitocondriais/genética , Mutação/genética , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Adulto , Saúde da Família , Testes Genéticos , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de PósitronsRESUMO
The human prion diseases, or transmissible spongiform encephalopathies, have captivated our imaginations since their discovery in the Fore linguistic group in Papua New Guinea in the 1950s. The mysterious and poorly understood "infectious protein" has become somewhat of a household name in many regions across the globe. From bovine spongiform encephalopathy (BSE), commonly identified as mad cow disease, to endocannibalism, media outlets have capitalized on these devastatingly fatal neurological conditions. Interestingly, since their discovery, there have been more than 492 incidents of iatrogenic transmission of prion diseases, largely resulting from prion-contaminated growth hormone and dura mater grafts. Although fewer than 9 cases of probable iatrogenic neurosurgical cases of Creutzfeldt-Jakob disease (CJD) have been reported worldwide, the likelihood of some missed cases and the potential for prion transmission by neurosurgery create considerable concern. Laboratory studies indicate that standard decontamination and sterilization procedures may be insufficient to completely remove infectivity from prion-contaminated instruments. In this unfortunate event, the instruments may transmit the prion disease to others. Much caution therefore should be taken in the absence of strong evidence against the presence of a prion disease in a neurosurgical patient. While the Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) have devised risk assessment and decontamination protocols for the prevention of iatrogenic transmission of the prion diseases, incidents of possible exposure to prions have unfortunately occurred in the United States. In this article, the authors outline the historical discoveries that led from kuru to the identification and isolation of the pathological prion proteins in addition to providing a brief description of human prion diseases and iatrogenic forms of CJD, a brief history of prion disease nosocomial transmission, and a summary of the CDC and WHO guidelines for prevention of prion disease transmission and decontamination of prion-contaminated neurosurgical instruments.
Assuntos
Procedimentos Neurocirúrgicos/efeitos adversos , Doenças Priônicas/etiologia , Doenças Priônicas/transmissão , Doenças dos Animais/transmissão , Animais , Bovinos , Síndrome de Creutzfeldt-Jakob/epidemiologia , Infecção Hospitalar , História do Século XX , História do Século XXI , Humanos , Doença Iatrogênica/epidemiologia , Doenças Priônicas/epidemiologia , Doenças Priônicas/históriaRESUMO
The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrP(Sc)). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrP(Sc) particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrP(Sc) particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrP(C) substrate, the dominant PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrP(Sc) is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers.