Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 457(7226): 205-9, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19043402

RESUMO

In teleosts, proper balance and hearing depend on mechanical sensors in the inner ear. These sensors include actin-based microvilli and microtubule-based cilia that extend from the surface of sensory hair cells and attach to biomineralized 'ear stones' (or otoliths). Otolith number, size and placement are under strict developmental control, but the mechanisms that ensure otolith assembly atop specific cells of the sensory epithelium are unclear. Here we demonstrate that cilia motility is required for normal otolith assembly and localization. Using in vivo video microscopy, we show that motile tether cilia at opposite poles of the otic vesicle create fluid vortices that attract otolith precursor particles, thereby biasing an otherwise random distribution to direct localized otolith seeding on tether cilia. Independent knockdown of subunits for the dynein regulatory complex and outer-arm dynein disrupt cilia motility, leading to defective otolith biogenesis. These results demonstrate a requirement for the dynein regulatory complex in vertebrates and show that cilia-driven flow is a key epigenetic factor in controlling otolith biomineralization.


Assuntos
Cílios/fisiologia , Dineínas/metabolismo , Proteínas dos Microtúbulos/metabolismo , Movimento , Membrana dos Otólitos/citologia , Membrana dos Otólitos/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Cílios/metabolismo , Dineínas/química , Dineínas/deficiência , Dineínas/genética , Epigênese Genética , Humanos , Microscopia de Vídeo , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/deficiência , Proteínas dos Microtúbulos/genética , Dados de Sequência Molecular , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Membrana dos Otólitos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
2.
Cell Motil Cytoskeleton ; 64(6): 461-73, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17366626

RESUMO

We previously described the Trypanin family of cytoskeleton-associated proteins that have been implicated in dynein regulation [Hill et al., J Biol Chem2000; 275(50):39369-39378; Hutchings et al., J Cell Biol2002;156(5):867-877; Rupp and Porter, J Cell Biol2003;162(1):47-57]. Trypanin from T. brucei is part of an evolutionarily conserved dynein regulatory system that is required for regulation of flagellar beat. In C. reinhardtii, the trypanin homologue (PF2) is part of an axonemal 'dynein regulatory complex' (DRC) that functions as a reversible inhibitor of axonemal dynein [Piperno et al., J Cell Biol1992;118(6):1455-1463; Gardner et al., J Cell Biol1994;127(5):1311-1325]. The DRC consists of an estimated seven polypeptides that are tightly associated with axonemal microtubules. Association with the axoneme is critical for DRC function, but the mechanism by which it attaches to the microtubule lattice is completely unknown. We demonstrate that Gas11, the mammalian trypanin/PF2 homologue, associates with microtubules in vitro and in vivo. Deletion analyses identified a novel microtubule-binding domain (GMAD) and a distinct region (IMAD) that attenuates Gas11-microtubule interactions. Using single-particle binding assays, we demonstrate that Gas11 directly binds microtubules and that the IMAD attenuates the interaction between GMAD and the microtubule. IMAD is able to function in either a cis- or trans-orientation with GMAD. The discovery that Gas11 provides a direct linkage to microtubules provides new mechanistic insight into the structural features of the dynein-regulatory complex.


Assuntos
Dineínas/metabolismo , Microtúbulos/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Proteínas do Citoesqueleto , Imunoprecipitação , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas/química
3.
Traffic ; 7(5): 538-48, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16643277

RESUMO

The mammalian GAS11 gene is a candidate tumor suppressor of unknown function that was previously identified as one of several genes upregulated upon growth arrest. Interestingly, although GAS11 homologs in Trypanosoma brucei (trypanin) and Chlamydomonas reinhardtii (PF2) are integral components of the flagellar axoneme and are necessary for regulating flagellar beat, the GAS11 gene was discovered based on its expression in cells that do not assemble a motile cilium. This suggests that GAS11 function might not be restricted to the cilium. To investigate this possibility, we generated GAS11-specific antibodies and demonstrate here that GAS11 is expressed in a variety of mammalian cells that lack a motile cilium. In COS7 cells, GAS11 is associated with the detergent-insoluble cytoskeleton and exhibits a juxtanuclear localization that overlaps with the pericentrosomal Golgi apparatus. This localization is dependent upon intact microtubules and is cell-cycle regulated, such that GAS11 is dispersed throughout the cytoplasm as cells progress through mitosis. GAS11 remains associated with Golgi fragments following depolymerization of cytoplasmic microtubules but is dispersed upon disruption of the Golgi with brefeldin A. These data suggest that GAS11 is associated with the Golgi apparatus. In support of this, recombinant GAS11 binds Golgi membranes in vitro. In growth-arrested mIMCD3 cells, GAS11 co-localizes with gamma-tubulin at the base of the primary cilium. The pericentrosomal Golgi apparatus and base of the cilium both represent convergence points for microtubule minus ends and correspond to sites where dynein regulation is required. The algal GAS11 homolog functions as part of a dynein regulatory complex (DRC) in the axoneme (Rupp and Porter. J Cell Biol 2003;162:47-57) and our findings suggest that components of this axonemal dynein regulatory system have been adapted in mammalian cells to participate in non-axonemal functions.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Dineínas/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cães , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA