Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 350, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902746

RESUMO

BACKGROUND: Breast cancer (BC) is a heterogeneous neoplasm characterized by several subtypes. One of the most aggressive with high metastasis rates presents overexpression of the human epidermal growth factor receptor 2 (HER2). A quantitative evaluation of HER2 levels is essential for a correct diagnosis, selection of the most appropriate therapeutic strategy and monitoring the response to therapy. RESULTS: In this paper, we propose the synergistic use of SERS and Raman technologies for the identification of HER2 expressing cells and its accurate assessment. To this end, we selected SKBR3 and MDA-MB-468 breast cancer cell lines, which have the highest and lowest HER2 expression, respectively, and MCF10A, a non-tumorigenic cell line from normal breast epithelium for comparison. The combined approach provides a quantitative estimate of HER2 expression and visualization of its distribution on the membrane at single cell level, clearly identifying cancer cells. Moreover, it provides a more comprehensive picture of the investigated cells disclosing a metabolic signature represented by an elevated content of proteins and aromatic amino acids. We further support these data by silencing the HER2 gene in SKBR3 cells, using the RNA interference technology, generating stable clones further analysed with the same combined methodology. Significant changes in HER2 expression are detected at single cell level before and after HER2 silencing and the HER2 status correlates with variations of fatty acids and downstream signalling molecule contents in the context of the general metabolic rewiring occurring in cancer cells. Specifically, HER2 silencing does reduce the growth ability but not the lipid metabolism that, instead, increases, suggesting that higher fatty acids biosynthesis and metabolism can occur independently of the proliferating potential tied to HER2 overexpression. CONCLUSIONS: Our results clearly demonstrate the efficacy of the combined SERS and Raman approach to definitely pose a correct diagnosis, further supported by the data obtained by the HER2 gene silencing. Furthermore, they pave the way to a new approach to monitor the efficacy of pharmacologic treatments with the aim to tailor personalized therapies and optimize patients' outcome.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Nanopartículas Metálicas/química
2.
Br J Cancer ; 122(9): 1354-1366, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132656

RESUMO

BACKGROUND: Metabolic reprogramming towards aerobic glycolysis in cancer supports unrestricted cell proliferation, survival and chemoresistance. The molecular bases of these processes are still undefined. Recent reports suggest crucial roles for microRNAs. Here, we provide new evidence of the implication of miR-27a in modulating colorectal cancer (CRC) metabolism and chemoresistance. METHODS: A survey of miR-27a expression profile in TCGA-COAD dataset revealed that miR-27a-overexpressing CRCs are enriched in gene signatures of mitochondrial dysfunction, deregulated oxidative phosphorylation, mTOR activation and reduced chemosensitivity. The same pathways were analysed in cell lines in which we modified miR-27a levels. The response to chemotherapy was investigated in an independent cohort and cell lines. RESULTS: miR-27a upregulation in vitro associated with impaired oxidative phosphorylation, overall mitochondrial activities and slight influence on glycolysis. miR-27a hampered AMPK, enhanced mTOR signalling and acted in concert with oncogenes and tumour cell metabolic regulators to force an aerobic glycolytic metabolism supporting biomass production, unrestricted growth and chemoresistance. This latter association was confirmed in our cohort of patients and cell lines. CONCLUSIONS: We disclose an unprecedented role for miR-27a as a master regulator of cancer metabolism reprogramming that impinges on CRC response to chemotherapy, underscoring its theragnostic properties.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , MicroRNAs/genética , Proteínas Quinases/genética , Serina-Treonina Quinases TOR/genética , Quinases Proteína-Quinases Ativadas por AMP , Adulto , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Cisplatino/farmacologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos
4.
Biochim Biophys Acta Rev Cancer ; 1867(1): 1-18, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27864070

RESUMO

The network of bidirectional homotypic and heterotypic interactions established among parenchymal tumour cells and surrounding mesenchymal stromal cells generates the tumour microenvironment (TME). These intricate crosstalks elicit both beneficial and adverse effects on tumour initiation and progression unbalancing the signals and responses from the neighbouring cells. Here, we highlight the structure, activities and evolution of TME cells considering a novel colorectal cancer (CRC) classification based on differential stromal composition and gene expression profiles. In this scenario, we scrutinise the molecular pathways that either change or become corrupted during CRC development and their relative prognostic value. Finally, we survey the therapeutic molecules directed against TME components currently available in clinical trials as well as those with stronger potential in preclinical studies. Elucidation of dynamic variations in the CRC TME cell composition and their relative contribution could provide novel diagnostic or prognostic biomarkers and allow more personalised therapeutic strategies.


Assuntos
Neoplasias Colorretais/patologia , Microambiente Tumoral/fisiologia , Animais , Progressão da Doença , Humanos , Células-Tronco Mesenquimais/patologia , Prognóstico , Transcriptoma/fisiologia
5.
Mol Cancer ; 15: 6, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26768731

RESUMO

BACKGROUND: Circadian disruption and deranged molecular clockworks are involved in carcinogenesis. The cryptochrome genes (CRY1 and CRY2) encode circadian proteins important for the functioning of biological oscillators. Their expression in human colorectal cancer (CRC) and in colon cancer cell lines has not been evaluated so far. METHODS: We investigated CRY1 and CRY2 expression in fifty CRCs and in the CaCo2, HCT116, HT29, SW480 cell lines. RESULTS: CRY1 (p = 0.01) and CRY2 (p < 0.0001) expression was significantly changed in tumour tissue, as confirmed in a large independent CRC dataset. In addition, lower CRY1 mRNA levels were observed in patients in the age range of 62-74 years (p = 0.018), in female patients (p = 0.003) and in cancers located at the transverse colon (p = 0.008). Lower CRY2 levels were also associated with cancer location at the transverse colon (p = 0.007). CRC patients displaying CRY1 (p = 0.042) and CRY2 (p = 0.043) expression levels over the median were hallmarked by a poorer survival rate. Survey of selected colon cancer cell lines evidenced variable levels of cryptochrome genes expression and time-dependent changes in their mRNA levels. Moreover, they showed reduced apoptosis, increased proliferation and different response to 5-fluorouracil and oxaliplatin upon CRY1 and CRY2 ectopic expression. The relationship with p53 status came out as an additional layer of regulation: higher CRY1 and CRY2 protein levels coincided with a wild type p53 as in HCT116 cells and this condition only marginally affected the apoptotic and cell proliferation characteristics of the cells upon CRY ectopic expression. Conversely, lower CRY and CRY2 levels as in HT29 and SW480 cells coincided with a mutated p53 and a more robust apoptosis and proliferation upon CRY transfection. Besides, an heterogeneous pattern of ARNTL, WEE and c-MYC expression hallmarked the chosen colon cancer cell lines and likely influenced their phenotypic changes. CONCLUSION: Cryptochrome gene expression is altered in CRC, particularly in elderly subjects, female patients and cancers located at the transverse colon, affecting overall survival. Altered CRY1 and CRY2 expression patterns and the interplay with the genetic landscape in colon cancer cells may underlie phenotypic divergence that could influence disease behavior as well as CRC patients survival and response to chemotherapy.


Assuntos
Neoplasias Colorretais/genética , Criptocromos/genética , Regulação Neoplásica da Expressão Gênica , Idoso , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Criptocromos/metabolismo , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hibridização in Situ Fluorescente , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção
6.
J Cell Mol Med ; 19(7): 1735-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25824098

RESUMO

CDKN1B encodes the cyclin-dependent kinase inhibitor p27/Kip1. CDKN1B mutations and polymorphisms are involved in tumorigenesis; specifically, the V109G single nucleotide polymorphism has been linked to different tumours with controversial results. Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant syndrome, characterized by the development of different types of neuroendocrine tumours and increased incidence of other malignancies. A clear genotype-phenotype correlation in MEN1 has not been established yet. In this study, we assessed whether the CDKN1B V109G polymorphism was associated with the development of aggressive tumours in 55 consecutive patients affected by MEN1. The polymorphism was investigated by PCR amplification of germline DNA followed by direct sequencing. Baseline and follow-up data of tumour types and their severity were collected and associated with the genetic data. MEN1-related aggressive and other malignant tumours of any origin were detected in 16.1% of wild-type and 33.3% of polymorphism allele-bearing patients (P = NS). The time interval between birth and the first aggressive tumour was significantly shorter in patients with the CDKN1B V109G polymorphism (median 46 years) than in those without (median not reached; P = 0.03). Similarly, shorter was the time interval between MEN1 diagnosis and age of the first aggressive tumour (P = 0.02). Overall survival could not be estimated as 96% patients were still alive at the time of the study. In conclusion, CDKN1B V109G polymorphism seems to play a role in the development of aggressive tumours in MEN1.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Predisposição Genética para Doença , Neoplasia Endócrina Múltipla Tipo 1/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Prognóstico , Adulto Jovem
7.
Biochim Biophys Acta ; 1840(7): 2361-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24735796

RESUMO

BACKGROUND: Cladosporol A, a secondary metabolite from Cladosporium tenuissimum, exhibits antiproliferative properties in human colorectal cancer cells by modulating the expression of some cell cycle genes (p21(waf1/cip1), cyclin D1). METHODS: PPARγ activation by cladosporol A was studied by overexpression and RNA interference assays. The interactions between PPARγ and Sp1 were investigated by co-immunoprecipitation and ChIp assays. ß-Catenin subcellular distribution and ß-catenin/TCF pathway inactivation were analyzed by western blot and RTqPCR, respectively. Cladosporol A-induced ß-catenin proteasomal degradation was examined in the presence of the specific inhibitor MG132. RESULTS: Cladosporol A inhibits cell growth through upregulation of p21(waf1/cip1) gene expression mediated by Sp1-PPARγ interaction. Exposure of HT-29 cells to cladosporol A causes ß-catenin nuclear export, proteasome degradation and reduced expression of its target genes. Upon treatment, PPARγ also activates E-cadherin gene at the mRNA and protein levels. CONCLUSION: In this work we provide evidence that PPARγ mediates the anti-proliferative action of cladosporol A in colorectal cancer cells. Upon ligand activation, PPARγ interacts with Sp1 and stimulates p21(waf1/cip1) gene transcription. PPARγ activation causes degradation of ß-catenin and inactivation of the downstream target pathway and, in addition, upregulates E-cadherin expression reinforcing cell-cell interactions and a differentiated phenotype. GENERAL SIGNIFICANCE: We elucidated the molecular mechanisms by which PPARγ mediates the anticancer activity of cladosporol A.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Naftalenos/metabolismo , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Ligantes , Naftalenos/farmacologia , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/metabolismo
8.
Biochim Biophys Acta ; 1843(6): 1225-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24631504

RESUMO

UNLABELLED: MicroRNAs (miRNAs) regulate diverse biological processes by inhibiting translation or inducing degradation of target mRNAs. miR-145 is a candidate tumor suppressor in colorectal carcinoma (CRC). Colorectal carcinogenesis involves deregulation of cellular processes controlled by a number of intertwined chief transcription factors, such as PPARγ and SOX9. Since PPAR family members are able to modulate complex miRNAs networks, we hypothesized a role of miRNA-145 in the interaction between PPARγ and SOX9 in colorectal carcinogenesis. To address this issue, we evaluated gene expression in tissue specimens of CRC patients and we took advantage of invitro models represented by CRC derived cell lines (CaCo2, SW480, HCT116, and HT-29), employing PPARγ activation and/or miRNA-145 ectopic overexpression to analyze how their interplay impact the expression of SOX9 and the development of a malignant phenotype. RESULTS: PPARγ regulates the expression of miR-145 by directly binding to a PPAR response element (PPRE) in its promoter at -1207/-1194bp from the transcription start site. The binding is essential for miR-145 upregulation by PPARγ upon rosiglitazone treatment. Ectopic expression of miR-145, in turn, regulates SOX9 expression through the binding to specific seed motifs. The PPARγ-miR-145-SOX9 axis overarches cell cycle progression, invasiveness and differentiation of CRC derived cell lines. Together, these results suggest that miR-145 is a novel target of PPARγ, acts as a tumor suppressor in CRC cell lines and is a key regulator of intestinal cell differentiation by directly targeting SOX9, a marker of undifferentiated progenitors in the colonic crypts.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , PPAR gama/metabolismo , Fatores de Transcrição SOX9/metabolismo , Idoso , Western Blotting , Ciclo Celular , Movimento Celular , Proliferação de Células , Estudos de Coortes , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Primers do DNA/química , Primers do DNA/genética , Feminino , Humanos , Luciferases/metabolismo , Masculino , Mutagênese , PPAR gama/genética , Fenótipo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reto/metabolismo , Reto/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/genética , Ativação Transcricional , Células Tumorais Cultivadas
9.
J Transl Med ; 13: 138, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25928084

RESUMO

BACKGROUND: Inflammatory breast cancer (IBC) is the most rare and aggressive variant of breast cancer (BC); however, only a limited number of specific gene signatures with low generalization abilities are available and few reliable biomarkers are helpful to improve IBC classification into a molecularly distinct phenotype. We applied a network-based strategy to gain insight into master regulators (MRs) linked to IBC pathogenesis. METHODS: In-silico modeling and Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) on IBC/non-IBC (nIBC) gene expression data (n = 197) was employed to identify novel master regulators connected to the IBC phenotype. Pathway enrichment analysis was used to characterize predicted targets of candidate genes. The expression pattern of the most significant MRs was then evaluated by immunohistochemistry (IHC) in two independent cohorts of IBCs (n = 39) and nIBCs (n = 82) and normal breast tissues (n = 15) spotted on tissue microarrays. The staining pattern of non-neoplastic mammary epithelial cells was used as a normal control. RESULTS: Using in-silico modeling of network-based strategy, we identified three top enriched MRs (NFAT5, CTNNB1 or ß-catenin, and MGA) strongly linked to the IBC phenotype. By IHC assays, we found that IBC patients displayed a higher number of NFAT5-positive cases than nIBC (69.2% vs. 19.5%; p-value = 2.79 10(-7)). Accordingly, the majority of NFAT5-positive IBC samples revealed an aberrant nuclear expression in comparison with nIBC samples (70% vs. 12.5%; p-value = 0.000797). NFAT5 nuclear accumulation occurs regardless of WNT/ß-catenin activated signaling in a substantial portion of IBCs, suggesting that NFAT5 pathway activation may have a relevant role in IBC pathogenesis. Accordingly, cytoplasmic NFAT5 and membranous ß-catenin expression were preferentially linked to nIBC, accounting for the better prognosis of this phenotype. CONCLUSIONS: We provide evidence that NFAT-signaling pathway activation could help to identify aggressive forms of BC and potentially be a guide to assignment of phenotype-specific therapeutic agents. The NFAT5 transcription factor might be developed into routine clinical practice as a putative biomarker of IBC phenotype.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Inflamatórias Mamárias/metabolismo , Biologia de Sistemas/métodos , Fatores de Transcrição/metabolismo , Algoritmos , Biomarcadores Tumorais , Ciclo Celular , Estudos de Coortes , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , beta Catenina/metabolismo
10.
Mol Carcinog ; 52(1): 1-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22025467

RESUMO

Cladosporols, purified and characterized as secondary metabolites from Cladosporium tenuissimum, display an antifungal activity. In this study, we tested the antiproliferative properties of cladosporol A, the main isoform of this metabolite family, against human cancer cell lines. By assessing cell viability, we found that cladosporol A inhibits the growth of various human colon cancers derived cell lines (HT-29, SW480, and CaCo-2) in a time- and concentration-dependent manner, specifically of HT-29 cells. The reduced cell proliferation was due to a G1-phase arrest, as assessed by fluorescence activated cell sorting analysis on synchronized HT-29 cells, and was associated with an early and robust over-expression of p21(waf1/cip1) , the well-known cyclin-dependent kinases inhibitor. This suggests that the drug may play a role in the control of cancer cell proliferation. Consistently, cyclin D1, cyclin E, CDK2, and CDK4 proteins were reduced and histone H1-associated CDK2 kinase activity inhibited. In addition to p21(waf1/cip1) , exposure to 20 µM cladosporol A caused a simultaneous increase of pERK and pJNK, suggesting that this drug activates a circuit that integrates cell cycle regulation and the signaling pathways both involved in the inhibition of cell proliferation. Finally, we showed that the increase of p21(waf1/cip1) expression was generated by a Sp1-dependent p53-independent stimulation of its gene transcription as mutagenesis of the Sp1 binding sites located in the p21 proximal promoter abolished induction. To our knowledge, this is the first report showing that cladosporol A inhibits colon cancer cell proliferation by modulating p21(waf1/cip1) expression.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Naftalenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Ciclinas/metabolismo , Células HT29 , Humanos , Sistema de Sinalização das MAP Quinases , Mutação , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
J Transl Med ; 11: 297, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24286138

RESUMO

BACKGROUND: INI1 (Integrase interactor 1), also known as SMARCB1, is the most studied subunit of chromatin remodelling complexes. Its role in colorectal tumorigenesis is not known. METHODS: We examined SMARCB1/INI1 protein expression in 134 cases of colorectal cancer (CRC) and 60 matched normal mucosa by using tissue microarrays and western blot and categorized the results according to mismatch repair status (MMR), CpG island methylator phenotype, biomarkers of tumor differentiation CDX2, CK20, vimentin and p53. We validated results in two independent data sets and in cultured CRC cell lines. RESULTS: Herein, we show that negative SMARCB1/INI1 expression (11% of CRCs) associates with loss of CDX2, poor differentiation, liver metastasis and shorter patients' survival regardless of the MMR status or tumor stage. Unexpectedly, even CRCs displaying diffuse nuclear INI1 staining (33%) show an adverse prognosis and vimentin over-expression, in comparison with the low expressing group (56%). The negative association of SMARCB1/INI1-lack of expression with a metastatic behavior is enhanced by the TP53 status. By interrogating global gene expression from two independent cohorts of 226 and 146 patients, we confirm the prognostic results and identify a gene signature characterized by SMARCB1/INI1 deregulation. Notably, the top genes of the signature (BCR, COMT, MIF) map on the long arm of chromosome 22 and are closely associated with SMARCB1/INI1. CONCLUSION: Our findings suggest that SMARCB1/INI1-dysregulation and genetic hot-spots on the long arm of chromosome 22 might play an important role in the CRC metastatic behavior and be clinically relevant as novel biomarkers.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos Par 22/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Proteínas Cromossômicas não Histona/genética , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Prognóstico , Proteína SMARCB1 , Análise de Sobrevida , Análise Serial de Tecidos , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Int J Nanomedicine ; 18: 6999-7020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034948

RESUMO

Background: Trastuzumab, a therapeutic monoclonal antibody directed against HER2, is routinely used to treat HER2-positive breast cancer with a good response rate. However, concerns have arisen in the clinical practice due to adverse side effects. One way to overcome these limitations is to encapsulate trastuzumab in nanoparticles to improve cytotoxic activity, increase intracellular drug concentrations, escape the immune system and avoid systemic degradation of the drug in vivo. Methods: A double emulsion method was used to encapsulate trastuzumab into poly(lactic-co-glycolic) nanoparticles, effective for their biocompatibility and biodegradability. These nanocarriers, hereafter referred to as TZPs, were characterised in terms of size, homogeneity, zeta potential and tested for their stability and drug release kinetics. Finally, the TZPs cytotoxicity was assessed in vitro on the HER2 positive SKBR3 breast cancer cell line and compared to free trastuzumab. Results: The TZPs were stable, homogeneous in size, with a reduced zeta potential. They showed higher encapsulation efficiency and drug loading, a prolonged trastuzumab release kinetics that retained its physicochemical properties and functionality. TZPs showed a stronger cytotoxicity and increased apoptosis than similar doses of free trastuzumab in the cell line analysed. Confocal microscopy and flow cytometry assessed TZPs and trastuzumab cellular uptake while Western blot evaluated downstream signalling, overall HER2 content and shedding. Conclusion: TZPs exert more robust effects than free trastuzumab via a dual mode of action: TZPs are taken up by cells through an endocytosis mechanism and release the drug intracellularly for longer time. Additionally, the TZPs that remain in the extracellular space release trastuzumab which binds to the cognate receptor and impairs downstream signalling. This is the sole modality used by free trastuzumab. Remarkably, half dose of TZPs is as efficacious as the highest dose of free drug supporting their possible use for drug delivery in vivo.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Trastuzumab/uso terapêutico , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Nanopartículas/química
13.
Cancers (Basel) ; 14(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35565443

RESUMO

CXCR4 is a G-Protein coupled receptor that is expressed nearly ubiquitously and is known to control cell migration via its interaction with CXCL12, the most ancient chemokine. The functions of CXCR4/CXCL12 extend beyond cell migration and involve the recognition and disposal of unhealthy or tumor cells. The CXCR4/CXCL12 axis plays a relevant role in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. Notably, CXCR4/CXCL12 cross-signal via the T and B cell receptors (TCR and BCR) and co-internalize with CD47, promoting tumor cell phagocytosis by macrophages in an anti-tumor immune process called ImmunoGenic Surrender (IGS). These specific activities in shaping the immune response might be exploited to improve current immunotherapies.

14.
Cell Death Differ ; 29(8): 1552-1568, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35034102

RESUMO

The circadian gene Timeless (TIM) provides a molecular bridge between circadian and cell cycle/DNA replication regulatory systems and has been recently involved in human cancer development and progression. However, its functional role in colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide, has not been fully clarified yet. Here, the analysis of two independent CRC patient cohorts (total 1159 samples) reveals that loss of TIM expression is an unfavorable prognostic factor significantly correlated with advanced tumor stage, metastatic spreading, and microsatellite stability status. Genome-wide expression profiling, in vitro and in vivo experiments, revealed that TIM knockdown induces the activation of the epithelial-to-mesenchymal transition (EMT) program. Accordingly, the analysis of a large set of human samples showed that TIM expression inversely correlated with a previously established gene signature of canonical EMT markers (EMT score), and its ectopic silencing promotes migration, invasion, and acquisition of stem-like phenotype in CRC cells. Mechanistically, we found that loss of TIM expression unleashes ZEB1 expression that in turn drives the EMT program and enhances the aggressive behavior of CRC cells. Besides, the deranged TIM-ZEB1 axis sets off the accumulation of DNA damage and delays DNA damage recovery. Furthermore, we show that the aggressive and genetically unstable 'CMS4 colorectal cancer molecular subtype' is characterized by a lower expression of TIM and that patients with the combination of low-TIM/high-ZEB1 expression have a poorer outcome. In conclusion, our results as a whole suggest the engagement of an unedited TIM-ZEB1 axis in key pathological processes driving malignant phenotype acquisition in colorectal carcinogenesis. Thus, TIM-ZEB1 expression profiling could provide a robust prognostic biomarker in CRC patients, supporting targeted therapeutic strategies with better treatment selection and patients' outcomes.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
15.
Cell Rep ; 40(7): 111233, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977477

RESUMO

5-Fluorouracil (5-FU) is a key component of chemotherapy for colorectal cancer (CRC). 5-FU efficacy is established by intracellular levels of folate cofactors and DNA damage repair strategies. However, drug resistance still represents a major challenge. Here, we report that alterations in serine metabolism affect 5-FU sensitivity in in vitro and in vivo CRC models. In particular, 5-FU-resistant CRC cells display a strong serine dependency achieved either by upregulating endogenous serine synthesis or increasing exogenous serine uptake. Importantly, regardless of the serine feeder strategy, serine hydroxymethyltransferase-2 (SHMT2)-driven compartmentalization of one-carbon metabolism inside the mitochondria represents a specific adaptation of resistant cells to support purine biosynthesis and potentiate DNA damage response. Interfering with serine availability or affecting its mitochondrial metabolism revert 5-FU resistance. These data disclose a relevant mechanism of mitochondrial serine use supporting 5-FU resistance in CRC and provide perspectives for therapeutic approaches.


Assuntos
Neoplasias Colorretais , Neoplasias , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Nucleotídeos/metabolismo , Serina/metabolismo
16.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34638478

RESUMO

miR-27a plays a driver role in rewiring tumor cell metabolism. We searched for new miR-27a targets that could affect mitochondria and identified FOXJ3, an apical factor of mitochondrial biogenesis. We analyzed FOXJ3 levels in an in vitro cell model system that was genetically modified for miR-27a expression and validated it as an miR-27a target. We showed that the miR-27a/FOXJ3 axis down-modulates mitochondrial biogenesis and other key members of the pathway, implying multiple levels of control. As assessed by specific markers, the miR-27a/FOXJ3 axis also dysregulates mitochondrial dynamics, resulting in fewer, short, and punctate organelles. Consistently, in high miR-27a-/low FOXJ3-expressing cells, mitochondria are functionally characterized by lower superoxide production, respiration capacity, and membrane potential, as evaluated by OCR assays and confocal microscopy. The analysis of a mouse xenograft model confirmed FOXJ3 as a target and suggested that the miR-27a/FOXJ3 axis affects mitochondrial abundance in vivo. A survey of the TCGA-COADREAD dataset supported the inverse relationship of FOXJ3 with miR-27a and reinforced cellular component organization or biogenesis as the most affected pathway. The miR-27a/FOXJ3 axis acts as a central hub in regulating mitochondrial homeostasis. Its discovery paves the way for new therapeutic strategies aimed at restraining tumor growth by targeting mitochondrial activities.

17.
EMBO Mol Med ; 13(6): e12344, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33956406

RESUMO

Boosting antitumor immunity has emerged as a powerful strategy in cancer treatment. While releasing T-cell brakes has received most attention, tumor recognition by T cells is a pre-requisite. Radiotherapy and certain cytotoxic drugs induce the release of damage-associated molecular patterns, which promote tumor antigen cross-presentation and T-cell priming. Antibodies against the "do not eat me" signal CD47 cause macrophage phagocytosis of live tumor cells and drive the emergence of antitumor T cells. Here we show that CXCR4 activation, so far associated only with tumor progression and metastasis, also flags tumor cells to immune recognition. Both CXCL12, the natural CXCR4 ligand, and BoxA, a fragment of HMGB1, promote the release of DAMPs and the internalization of CD47, leading to protective antitumor immunity. We designate as Immunogenic Surrender the process by which CXCR4 turns in tumor cells to macrophages, thereby subjecting a rapidly growing tissue to immunological scrutiny. Importantly, while CXCL12 promotes tumor cell proliferation, BoxA reduces it, and might be exploited for the treatment of malignant mesothelioma and a variety of other tumors.


Assuntos
Antígeno CD47 , Mesotelioma , Animais , Linhagem Celular Tumoral , Imunização , Macrófagos , Mesotelioma/imunologia , Mesotelioma/metabolismo , Mesotelioma/terapia , Camundongos , Fagocitose
18.
BMC Biol ; 7: 24, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19460132

RESUMO

BACKGROUND: We previously showed that mice lacking the high mobility group A1 gene (Hmga1-knockout mice) developed a type 2-like diabetic phenotype, in which cell-surface insulin receptors were dramatically reduced (below 10% of those in the controls) in the major targets of insulin action, and glucose intolerance was associated with increased peripheral insulin sensitivity. This particular phenotype supports the existence of compensatory mechanisms of insulin resistance that promote glucose uptake and disposal in peripheral tissues by either insulin-dependent or insulin-independent mechanisms. We explored the role of these mechanisms in the regulation of glucose homeostasis by studying the Hmga1-knockout mouse model. Also, the hypothesis that increased insulin sensitivity in Hmga1-deficient mice could be related to the deficit of an insulin resistance factor is discussed. RESULTS: We first show that HMGA1 is needed for basal and cAMP-induced retinol-binding protein 4 (RBP4) gene and protein expression in living cells of both human and mouse origin. Then, by employing the Hmga1-knockout mouse model, we provide evidence for the identification of a novel biochemical pathway involving HMGA1 and the RBP4, whose activation by the cAMP-signaling pathway may play an essential role for maintaining glucose metabolism homeostasis in vivo, in certain adverse metabolic conditions in which insulin action is precluded. In comparative studies of normal and mutant mice, glucagon administration caused a considerable upregulation of HMGA1 and RBP4 expression both at the mRNA and protein level in wild-type animals. Conversely, in Hmga1-knockout mice, basal and glucagon-mediated expression of RBP4 was severely attenuated and correlated inversely with increased Glut4 mRNA and protein abundance in skeletal muscle and fat, in which the activation state of the protein kinase Akt, an important downstream mediator of the metabolic effects of insulin on Glut4 translocation and carbohydrate metabolism, was simultaneously increased. CONCLUSION: These results indicate that HMGA1 is an important modulator of RBP4 gene expression in vivo. Further, they provide evidence for the identification of a novel biochemical pathway involving the cAMP-HMGA1-RBP4 system, whose activation may play a role in glucose homeostasis in both rodents and humans. Elucidating these mechanisms has importance for both fundamental biology and therapeutic implications.


Assuntos
AMP Cíclico/metabolismo , Glucose/metabolismo , Proteína HMGA1a/metabolismo , Homeostase , Redes e Vias Metabólicas , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , AMP Cíclico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon/administração & dosagem , Glucagon/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Proteína HMGA1a/deficiência , Proteína HMGA1a/genética , Homeostase/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Proteínas Plasmáticas de Ligação ao Retinol/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
19.
Sci Rep ; 9(1): 5434, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931956

RESUMO

Peroxisome Proliferator-Activated Receptor γ (PPARγ) is an important sensor at the crossroad of diabetes, obesity, immunity and cancer as it regulates adipogenesis, metabolism, inflammation and proliferation. PPARγ exerts its pleiotropic functions upon binding of natural or synthetic ligands. The molecular mechanisms through which PPARγ controls cancer initiation/progression depend on the different mode of binding of distinctive ligands. Here, we analyzed a series of chiral phenoxyacetic acid analogues for their ability to inhibit colorectal cancer (CRC) cells growth by binding PPARγ as partial agonists as assessed in transactivation assays of a PPARG-reporter gene. We further investigated compounds (R,S)-3, (S)-3 and (R,S)-7 because they combine the best antiproliferative activity and a limited transactivation potential and found that they induce cell cycle arrest mainly via upregulation of p21waf1/cip1. Interestingly, they also counteract the ß-catenin/TCF pathway by repressing c-Myc and cyclin D1, supporting their antiproliferative effect. Docking experiments provided insight into the binding mode of the most active compound (S)-3, suggesting that its partial agonism could be related to a better stabilization of H3 rather than H11 and H12. In conclusion, we identified a series of PPARγ partial agonists affecting distinct pathways all leading to strong antiproliferative effects. These findings may pave the way for novel therapeutic strategies in CRC.


Assuntos
Acetatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , PPAR gama/agonistas , Acetatos/química , Ciclo Celular/efeitos dos fármacos , Células HEK293 , Células HT29 , Humanos , Simulação de Acoplamento Molecular , PPAR gama/química , PPAR gama/genética , Estereoisomerismo
20.
Sci Rep ; 9(1): 6796, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043661

RESUMO

Conservation of agrobiodiversity is a major concern worldwide. Several strategies have been designed and programmed to reduce biodiversity erosion due to anthropic and non-anthropic causes. To this end, we set up a multidisciplinary approach based on the genetic analysis of selected cultivars and recognition of the environmental parameters. We genotyped the sweet cherry cultivars of Campania region in southern Italy by using simple sequence repeats and further investigated them by cluster analysis, disclosing a homogeneous genetic constitution, different from that of commercial accessions. By structure analysis we identified three distinct genetic clusters, each characterized by common and distinct alleles. Survey of the cultivars' geographical distribution by quartic kernel function identified four preferred districts further characterized for soil origin, pedologic, agronomic features and urbanization impact. We correlated these environmental parameters, typical of the identified areas, with the three genetic pools and found a statistically significant association for each cluster. When we overlaid the cultivation traditions and cultural heritage, we found they have a dominant role; on these premises, we generated new territorial maps. In conclusion, we propose a novel methodological approach based on molecular, geo-pedological and cultural parameters with the aim to recognize biocultural refugia and preserve endangered or valuable cultivars.


Assuntos
Conservação dos Recursos Naturais , Meio Ambiente , Repetições de Microssatélites , Prunus avium/crescimento & desenvolvimento , Prunus avium/genética , Refúgio de Vida Selvagem , Solo/química , Marcadores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA