RESUMO
Regulated cell death (RCD) results from the activation of one or more signal transduction modules both in physiological or pathological conditions. It is now established that RCD is involved in numerous human diseases, including cancer. As regulated cell death processes can be modulated by pharmacological tools, the research reported here aims to characterize new marine compounds acting as RCD modulators. Protein kinases (PKs) are key signaling actors in various RCDs notably through the control of either mitosis (e.g., the PKs Aurora A and B) or necroptosis (e.g., RIPK1 and RIPK3). From the primary screening of 27 various extracts of marine organisms collected in the Mediterranean Sea, an extract and subsequently a purified high molecular weight compound dubbed P3, were isolated from the marine sponge Crambe tailliezi and characterized as a selective inhibitor of PKs Aurora A and B. Furthermore, P3 was shown to induce apoptosis and to decrease proliferation and mitotic index of human osteosarcoma U-2 OS cells.
Assuntos
Produtos Biológicos/farmacologia , Crambe (Esponja)/química , Crambe (Esponja)/metabolismo , Citotoxinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Células MCF-7 , Mar Mediterrâneo , Peso Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
The primary cilium is a key organelle in numerous physiological and developmental processes. Genetic defects in the formation of this non-motile structure, in its maintenance and function, underlie a wide array of ciliopathies in human, including craniofacial, brain and heart malformations, and retinal and hearing defects. We used exome sequencing to study the molecular basis of disease in an 11-year-old female patient who suffered from growth retardation, global developmental delay with absent speech acquisition, agenesis of corpus callosum and paucity of white matter, sensorineural deafness, retinitis pigmentosa, vertebral anomalies, patent ductus arteriosus, and facial dysmorphism reminiscent of STAR syndrome, a suspected ciliopathy. A homozygous variant, c.870_871del, was identified in the CDK10 gene, predicted to cause a frameshift, p.Trp291Alafs*18, in the cyclin-dependent kinase 10 protein. CDK10 mRNAs were detected in patient cells and do not seem to undergo non-sense mediated decay. CDK10 is the binding partner of Cyclin M (CycM) and CDK10/CycM protein kinase regulates ciliogenesis and primary cilium elongation. Notably, CycM gene is mutated in patients with STAR syndrome. Following incubation, the patient cells appeared less elongated and more densely populated than the control cells suggesting that the CDK10 mutation affects the cytoskeleton. Upon starvation and staining with acetylated-tubulin, γ-tubulin, and Arl13b, the patient cells exhibited fewer and shorter cilia than control cells. These findings underscore the importance of CDK10 for the regulation of ciliogenesis. CDK10 defect is likely associated with a new form of ciliopathy phenotype; additional patients may further validate this association.
Assuntos
Agenesia do Corpo Caloso/genética , Quinases Ciclina-Dependentes , Surdez/genética , Estudos de Associação Genética , Homozigoto , Mutação , Displasia Retiniana/genética , Agenesia do Corpo Caloso/diagnóstico , Alelos , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Análise Mutacional de DNA , Surdez/diagnóstico , Exoma , Fácies , Feminino , Expressão Gênica , Humanos , Linhagem , Fenótipo , RNA Mensageiro/genética , Displasia Retiniana/diagnósticoRESUMO
Cyclin-dependent kinases (CDKs) regulate a variety of fundamental cellular processes. CDK10 stands out as one of the last orphan CDKs for which no activating cyclin has been identified and no kinase activity revealed. Previous work has shown that CDK10 silencing increases ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2)-driven activation of the MAPK pathway, which confers tamoxifen resistance to breast cancer cells. The precise mechanisms by which CDK10 modulates ETS2 activity, and more generally the functions of CDK10, remain elusive. Here we demonstrate that CDK10 is a cyclin-dependent kinase by identifying cyclin M as an activating cyclin. Cyclin M, an orphan cyclin, is the product of FAM58A, whose mutations cause STAR syndrome, a human developmental anomaly whose features include toe syndactyly, telecanthus, and anogenital and renal malformations. We show that STAR syndrome-associated cyclin M mutants are unable to interact with CDK10. Cyclin M silencing phenocopies CDK10 silencing in increasing c-Raf and in conferring tamoxifen resistance to breast cancer cells. CDK10/cyclin M phosphorylates ETS2 in vitro, and in cells it positively controls ETS2 degradation by the proteasome. ETS2 protein levels are increased in cells derived from a STAR patient, and this increase is attributable to decreased cyclin M levels. Altogether, our results reveal an additional regulatory mechanism for ETS2, which plays key roles in cancer and development. They also shed light on the molecular mechanisms underlying STAR syndrome.
Assuntos
Canal Anal/anormalidades , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Hipertelorismo/genética , Rim/anormalidades , Proteólise , Proteína Proto-Oncogênica c-ets-2/metabolismo , Sindactilia/genética , Dedos do Pé/anormalidades , Anormalidades Urogenitais/genética , Canal Anal/metabolismo , Western Blotting , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/deficiência , Ciclinas/genética , Células HEK293 , Humanos , Hipertelorismo/metabolismo , Imunoprecipitação , Rim/metabolismo , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Sindactilia/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Anormalidades Urogenitais/metabolismoRESUMO
Cyclin-dependent kinases (CDKs) control many cellular processes and are considered important therapeutic targets. Large collections of inhibitors targeting CDK active sites have been discovered, but their use in chemical biology or drug development has been often hampered by their general lack of specificity. An alternative approach to develop more specific inhibitors is targeting protein interactions involving CDKs. CKS proteins interact with some CDKs and play important roles in cell division. We discovered two small-molecule inhibitors of CDK-CKS interactions. They bind to CDK2, do not inhibit its enzymatic activity, inhibit the proliferation of tumor cell lines, induce an increase in G1 and/or S-phase cell populations, and cause a decrease in CDK2, cyclin A, and p27(Kip1) levels. These molecules should help decipher the complex contributions of CDK-CKS complexes in the regulation of cell division, and they might present an interesting therapeutic potential.
Assuntos
Quinases relacionadas a CDC2 e CDC28/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Quinases relacionadas a CDC2 e CDC28/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/efeitos dos fármacos , Ciclina A/antagonistas & inibidores , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Humanos , Células MCF-7/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Terapia de Alvo Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismoRESUMO
We previously identified a peptide aptamer (named R5G42) via functional selection for its capacity to slow cell proliferation. A yeast two-hybrid screen of human cDNA libraries, using R5G42 as "bait," allowed the identification of two binding proteins with very different functions: calcineurin A (CnA) (PP2B/PPP3CA), a protein phosphatase well characterized for its role in the immune response, and NS5A-TP2/HD domain containing 2, a much less studied protein induced subsequent to hepatitis C virus non-structural protein 5A expression in HepG2 hepatocellular carcinoma cells, with no known activity. Our objective in the present study was to dissect the dual target specificity of R5G42 in order to have tools with which to better characterize the actions of the peptide aptamers toward their individual targets. This was achieved through the selection of random mutants of the variable loop, derived from R5G42, evaluating their specificity toward CnA and NS5A-TP2 and analyzing their sequence. An interdisciplinary approach involving biomolecular computer simulations with integration of the sequence data and yeast two-hybrid binding phenotypes of these mutants yielded two structurally distinct conformers affording the potential molecular basis of the binding diversity of R5G42. Evaluation of the biological impact of CnA- versus NS5A-TP2-specific peptide aptamers indicated that although both contributed to the anti-proliferative effect of R5G42, CnA-binding was essential to stimulate the nuclear translocation of nuclear factor of activated T cells, indicative of the activation of endogenous CnA. By dissecting the target specificity of R5G42, we have generated novel tools with which to study each target individually. Apta-C8 is capable of directly activating CnA independent of binding to NS5A-TP2 and will be an important tool in studying the role of CnA activation in the regulation of different signaling pathways, whereas Apta-E1 will allow dissection of the function of NS5A-TP2, serving as an example of the usefulness of peptide aptamer technology for investigating signaling pathways.
Assuntos
Aptâmeros de Peptídeos/metabolismo , Calcineurina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Aptâmeros de Peptídeos/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Ratos , Técnicas do Sistema de Duplo-HíbridoRESUMO
These recommendations, drawn from current data in the medical literature, incorporate the risks of hemithyroidectomy (HT) and total thyroidectomy (TT) and clarify the place of these two procedures in clinical settings. Discussions leading to a consensus were then assessed by the Francophone Association for Endocrine Surgery (Association francophone de chirurgie endocrinienne [AFCE]), along with the French Society of Endocrinology (Société française d'endocrinologie [SFE]), and the French Society of Nuclear Medicine (Société française de médecine nucléaire [SFMN]). The complication rate was twice as high after TT compared to HT. Total thyroidectomy requires life-long thyroid hormone supplementation, whereas such supplementation is required in only 30% of patients after HT. When surgery is indicated for Bethesda category II nodules, and in the absence of any indication for surgery on the contralateral lobe, HT is recommended. In patients with thyroid cancer (TC)≤1cm requiring surgical management or TC≤2cm, in the absence of risk factors for TC and in the absence of pre- or intraoperative detection of extrathyroidal extension, lymph node metastases (cN0) and/or suspected contra-lateral disease, HT is the preferred technique as long as the patient accepts the possibility of TT which might be required when aggressive forms of cancer are detected on definitive cytohistology (extrathyroidal extension, lymphovascular invasion, high-grade histology). For TC measuring between 2 and 4cm, the debate between HT and TT remains open today, although some surgeons tend to prefer TT. In patients with TC>4cm, macroscopic lymph node involvement (cN1), signs of extrathyroidal extension or predisposing factors for TC, TT is the treatment of choice.
Assuntos
Medicina Nuclear , Neoplasias da Glândula Tireoide , Humanos , Tireoidectomia/métodos , Neoplasias da Glândula Tireoide/cirurgia , Fatores de Risco , Metástase Linfática , Estudos RetrospectivosRESUMO
BACKGROUND: CDK10 is a poorly known cyclin M (CycM)-dependent kinase. Loss-of-function mutations in the genes encoding CycM or CDK10 cause, respectively, STAR or Al Kaissi syndromes, which present a constellation of malformations and dysfunctions. Most reported mutations abolish gene expression, but two mutations found in 3' exons could allow the expression of CDK10 and CycM truncated variants. METHODS: We built a structural model that predicted a preserved ability of both variants to form a CDK10/CycM heterodimer. Hence, we functionally characterized these two truncated variants by determining their capacity to heterodimerize and form an active protein kinase when expressed in insect cells, by examining their two-hybrid interaction profiles when expressed in yeast, and by observing their expression level and stability when expressed in human cells. RESULTS: Both truncated variants retain their ability to form a CDK10/CycM heterodimer. While the CycM variant partially activates CDK10 activity in vitro, the CDK10 variant remains surprisingly inactive. Expression in human cells revealed that the CDK10 and CycM variants are strongly and partially degraded by the proteasome, respectively. CONCLUSION: Our results point to a total loss of CDK10/CycM activity in the Al Kaissi patient and a partial loss in the STAR patients.
Assuntos
Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/etiologia , Predisposição Genética para Doença , Mutação , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/química , Ciclinas/metabolismo , Deficiências do Desenvolvimento/metabolismo , Ativação Enzimática , Expressão Gênica , Estudos de Associação Genética , Humanos , Mutação com Perda de Função , Modelos Moleculares , Fenótipo , Multimerização Proteica , Proteínas Recombinantes de Fusão , Índice de Gravidade de Doença , Relação Estrutura-AtividadeRESUMO
Extensive studies in the past 30 years have established that cyclin-dependent kinases (CDKs) exert many diverse, important functions in a number of molecular and cellular processes that are at play during development. Not surprisingly, mutations affecting CDKs or their activating cyclin subunits have been involved in a variety of rare human developmental disorders. These recent findings are reviewed herein, giving a particular attention to the discovered mutations and their demonstrated or hypothesized functional consequences, which can account for pathological human phenotypes. The review highlights novel, important CDK or cyclin functions that were unveiled by their association with human disorders, and it discusses the shortcomings of mouse models to reveal some of these functions. It explains how human genetics can be used in combination with proteome-scale interaction databases to loom regulatory networks around CDKs and cyclins. Finally, it advocates the use of these networks to profile pathogenic CDK or cyclin variants, in order to gain knowledge on protein function and on pathogenic mechanisms.
Assuntos
Quinases Ciclina-Dependentes , Deficiências do Desenvolvimento , Criança , Quinases Ciclina-Dependentes/genética , Ciclinas , HumanosRESUMO
Yeast has been used for thousands of years as a leavening agent and for alcoholic fermentation, but it is only in 1857 that Louis Pasteur described the microorganism at the basis of these two tremendously important economic activities. From there, yeast strains could be selected and modified on a rational basis to optimize these uses, thereby also allowing the development of yeast as a popular eukaryotic model system. This model led to a cornucopia of seminal discoveries in cell biology. For about two decades yeast has also been used as a model and a tool for therapeutic research, from the production of therapeutics and the development of diagnostic tools to the identification of new therapeutic targets, drug candidates and chemical probes. These diverse chemobiological applications of yeast are presented and discussed in the present review article.
TITLE: La levure modèle et outil aussi pour la recherche thérapeutique. ABSTRACT: La levure a été utilisée de façon empirique pendant des millénaires pour la panification et la fermentation des sucres en alcool. C'est seulement à partir de 1857 que Louis Pasteur décrit le microorganisme à l'origine de ces deux activités agroalimentaires majeures. Dès lors, les souches de levure ont pu être sélectionnées et modifiées sur une base rationnelle pour optimiser leurs usages agroalimentaires, permettant ainsi l'essor de la levure comme modèle biologique eucaryote. Cette utilisation a conduit à de très nombreuses découvertes de biologie cellulaire fondamentale. Depuis une vingtaine d'années, la levure est également utilisée comme modèle et outil pour la santé humaine. Ces approches s'étendent de la production de molécules thérapeutiques à la recherche de candidats-médicaments et de sondes chimiques, en passant par la mise au point de tests diagnostiques et la découverte de nouvelles cibles thérapeutiques. Cette utilisation de la levure en chémobiologie fait l'objet de la présente revue.
Assuntos
Pesquisa Biomédica/métodos , Modelos Biológicos , Saccharomycetales/fisiologia , Pesquisa Biomédica/história , Pesquisa Biomédica/tendências , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/tendências , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendênciasRESUMO
Cyclin-dependent kinases (CDKs) constitute a family of 20 serine/threonine protein kinases that play pivotal roles in the regulation of numerous important molecular and cellular processes. CDKs have long been considered promising therapeutic targets in a variety of pathologies, and the recent therapeutic success of CDK4/6 inhibitors in breast cancers has renewed interest in their therapeutic potential. Small-molecule inhibitors have been identified for every human CDK, except for CDK10. The only recent discovery of an activating cyclin (CycM) for CDK10 enabled us to identify its first phosphorylation substrates and gain insights into its biological functions. Yet, our knowledge of this kinase remains incomplete, despite it being the only member of its family that causes severe human developmental syndromes, when mutated either on the cyclin or the CDK moiety. CDK10 small-molecule inhibitors would be useful in exploring the functions of this kinase and gauging its potential as a therapeutic target for some cancers. Here, we report the identification of an optimized peptide phosphorylation substrate of CDK10/CycM and the development of the first homogeneous, miniaturized CDK10/CycM in vitro kinase assay. We reveal the ability of known CDK inhibitors, among which clinically tested SNS-032, riviciclib, flavopiridol, dinaciclib, AZD4573 and AT7519, to potently inhibit CDK10/CycM. We also show that NVP-2, a strong, remarkably selective CDK9 inhibitor is an equally potent CDK10/CycM inhibitor. Finally, we validate this kinase assay for applications in high-throughput screening campaigns to discover new, original CDK10 inhibitors.
RESUMO
In this work, unique flavopiridol analogs bearing thiosugars, amino acids and heterocyclic moieties tethered to the flavopiridol via thioether and amine bonds mainly on its C ring have been prepared. The analogs bearing thioether-benzimidazoles as substituents have demonstrated high cytotoxic activity in vitro against up to seven cancer cell lines. Their cytotoxic effects are comparable to those of flavopiridol. The most active compound 13c resulting from a structure-activity relationship (SAR) study and in silico docking showed the best antiproliferative activity and was more efficient than the reference compound. In addition, compound 13c showed significant nanomolar inhibition against CDK9, CDK10, and GSK3ß protein kinases.
Assuntos
Antineoplásicos/farmacologia , Flavonoides/farmacologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Flavonoides/síntese química , Flavonoides/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Peptide aptamers have primarily been used as research tools to manipulate protein function and study regulatory networks. However, they also find multiple applications in therapeutic research, from target identification and validation to drug discovery. Because of their unbiased combinatorial nature, peptide aptamers interrogate the biological significance of numerous molecular surfaces on target proteins. Their use enables the identification and validation of some of these surfaces as interesting therapeutic targets to pursue. Peptide aptamers can subsequently be used to guide the discovery of small molecule drugs specific for these molecular surfaces.Here, we present a high-throughput screening assay that identifies small molecules that displace interactions between proteins and their cognate peptide aptamers. AptaScreen is a duplex yeast two-hybrid assay featuring two luciferase reporter genes. It can be performed in 96- or 384-well plates and can be fully automated.
Assuntos
Aptâmeros de Peptídeos/metabolismo , Aptâmeros de Peptídeos/uso terapêutico , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/metabolismo , Aptâmeros de Peptídeos/genética , Humanos , Luminescência , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-HíbridoRESUMO
The availability of large collections of small-molecule inhibitors of protein interactions would bear a tremendous impact both on academic and therapeutic research. The past recent years have seen a marked acceleration in the discovery of protein interaction inhibitors, through structure-based drug design but mostly through screening efforts. This article attempts to review the impressive number and variety of in vitro and cellular screening assays that have been developed and, for most of them, used successfully to identify small-molecule inhibitors of protein interactions. Various strategies aimed at improving hit rates are also reviewed, and future challenges to improve discovery success rates are discussed. The growing list of protein interaction inhibitors and the large arsenal of screening methods, now available to most laboratories or screening facilities, will probably convince an increasing number of academic and industrial scientists that protein interactions are more druggable than once feared, and that their respective research interests would greatly benefit from the discovery of protein interaction inhibitors.
Assuntos
Descoberta de Drogas , Mapeamento de Interação de Proteínas , Animais , Ensaio de Imunoadsorção Enzimática , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Técnicas do Sistema de Duplo-HíbridoRESUMO
Cyclin-dependent kinases (CDKs) play important roles in the control of fundamental cellular processes. Some of the most characterized CDKs are considered to be pertinent therapeutic targets for cancers and other diseases, and first clinical successes have recently been obtained with CDK inhibitors. Although discovered in the pre-genomic era, CDK10 attracted little attention until it was identified as a major determinant of resistance to endocrine therapy for breast cancer. In some studies, CDK10 has been shown to promote cell proliferation whereas other studies have revealed a tumor suppressor function. The recent discovery of Cyclin M as a CDK10 activating partner has allowed the unveiling of a protein kinase activity against the ETS2 oncoprotein, whose degradation is activated by CDK10/Cyclin M-mediated phosphorylation. CDK10/Cyclin M has also been shown to repress ciliogenesis and to maintain actin network architecture, through the phoshorylation of the PKN2 protein kinase and the control of RhoA stability. These findings shed light on the molecular mechanisms underlying STAR syndrome, a severe human developmental genetic disorder caused by mutations in the Cyclin M coding gene. They also pave the way to a better understanding of the role of CDK10/Cyclin M in cancer.
Assuntos
Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Proteína Quinase C/metabolismo , HumanosRESUMO
The bioluminescence resonance energy transfer (BRET) technology is a widely used live cell-based method for monitoring protein-protein interactions as well as conformational changes within proteins or molecular complexes. Considering the emergence of protein-protein interactions as a new promising class of therapeutic targets, we have adapted the BRET method in budding yeast. In this technical note, we describe the advantages of using this simple eukaryotic model rather than mammalian cells to perform high-throughput screening of chemical compound collections: genetic tractability, tolerance to solvent, rapidity, and no need of expensive robotic systems. Here, the HDM2/p53 interaction, related to cancer, is used to highlight the interest of this technology in yeast. Sharing the protocol of this BRET-based assay with the scientific community will extend its application to other protein-protein interactions, even though it is toxic for mammalian cells, in order to discover promising therapeutic candidates.
Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Descoberta de Drogas/métodos , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Leveduras/efeitos dos fármacos , Leveduras/metabolismo , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Mapeamento de Interação de Proteínas/métodos , Fluxo de TrabalhoRESUMO
Peptide aptamers are combinatorial protein reagents that bind to target proteins with a high specificity and a strong affinity. By so doing, they can modulate the function of their cognate targets. Because peptide aptamers introduce perturbations that are similar to those caused by therapeutic molecules, their use identifies and/or validates therapeutic targets with a higher confidence level than is typically provided by methods that act upon protein expression levels. The unbiased combinatorial nature of peptide aptamers enables them to 'decorate' numerous polymorphic protein surfaces, whose biological relevance can be inferred through characterization of the peptide aptamers. Bioactive aptamers that bind druggable surfaces can be used in displacement screening assays to identify small-molecule hits to the surfaces. The peptide aptamer technology has a positive impact on drug discovery by addressing major causes of failure and by offering a seamless, cost-effective process from target validation to hit identification.
Assuntos
Aptâmeros de Peptídeos/metabolismo , Desenho de Fármacos , Proteínas/metabolismo , Animais , Aptâmeros de Peptídeos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligação Proteica , Conformação Proteica , Proteínas/química , Proteínas/genética , Técnica de Seleção de Aptâmeros , Tecnologia Farmacêutica/tendências , Técnicas do Sistema de Duplo-HíbridoRESUMO
Inducible gene expression systems have contributed significantly to the understanding of molecular regulatory networks. Here we describe a simple and powerful RNA interference-based method that can silence the expression of any transgene. We first used an IRES bicistronic lentiviral vector and showed that targeting the second cistron with a specific siRNA resulted in silencing of both transgenes. We then inserted a siRNA minimal target sequence in the 3'-untranslated region (3'-UTR) of a transgene and showed that the cognate siRNA delivered by a lentiviral vector led to the partial silencing of the transgene. The multimerization of this siRNA target sequence led to the highly efficient silencing of four different transgenes. This new method to silence transgene expression is more versatile than existing methods of conditional inactivation of gene expression, such as transcriptional switches or site-specific recombination. It is applicable to a wide variety of models including primary cells, terminally differentiated cells and transgenic animals.
Assuntos
Técnicas Genéticas , Interferência de RNA , Transgenes , Animais , Células Cultivadas , Vetores Genéticos , Humanos , Lentivirus/genética , Dados de Sequência MolecularRESUMO
FUR (Ferric Uptake Regulator) protein is a global transcriptional regulator that senses iron status and controls the expression of genes involved in iron homeostasis, virulence, and oxidative stress. Ubiquitous in Gram-negative bacteria and absent in eukaryotes, FUR is an attractive antivirulence target since the inactivation of the fur gene in various pathogens attenuates their virulence. The characterization of 13-aa-long anti-FUR linear peptides derived from the variable part of the anti-FUR peptide aptamers, that were previously shown to decrease pathogenic E. coli strain virulence in a fly infection model, is described herein. Modeling, docking, and experimental approaches in vitro (activity and interaction assays, mutations) and in cells (yeast two-hybrid assays) were combined to characterize the interactions of the peptides with FUR, and to understand their mechanism of inhibition. As a result, reliable structure models of two peptide-FUR complexes are given. Inhibition sites are mapped in the groove between the two FUR subunits where DNA should also bind. Another peptide behaves differently and interferes with the dimerization itself. These results define these novel small peptide inhibitors as lead compounds for inhibition of the FUR transcription factor.
Assuntos
Aptâmeros de Peptídeos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Escherichia coli/metabolismo , Homeostase , Ferro/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Virulência , Escherichia coli/patogenicidade , Simulação de Acoplamento Molecular , Técnicas do Sistema de Duplo-HíbridoRESUMO
CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.
Assuntos
Actinas/metabolismo , Canal Anal/anormalidades , Cílios/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Hipertelorismo/enzimologia , Rim/anormalidades , Sindactilia/enzimologia , Dedos do Pé/anormalidades , Anormalidades Urogenitais/enzimologia , Actinas/ultraestrutura , Canal Anal/enzimologia , Linhagem Celular , Estabilidade Enzimática , Humanos , Hipertelorismo/genética , Rim/enzimologia , Fosforilação , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Sindactilia/genética , Anormalidades Urogenitais/genética , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
Many plant species within the terrestrial ecological zones of Canada have not yet been investigated for anti-cancer activity. We examined the scientific literature describing the endemic flora from the prairie ecological zone and selected the species, Thermopsis rhombifolia, locally known as the buffalo bean, for investigation of its anti-cancer potential. We tested it in cell-based assays using phenotypic screens that feature some of the hallmarks of cancer. An ethanolic extract prepared from T. rhombifolia was cytotoxic to HT-29 (colon) and SH-SY5Y (brain) cancer cell lines, and showed little cytotoxicity to a normal human cell line (WI-38). In phenotypic assays, we identified activities in the extracts that target cell death, cell cycle and cell adhesion. These data highlight the anti-cancer potential of previously untested plants found in northern ecological zones and the feasibility of using pertinent phenotypic assays to examine the anti-cancer potential of natural product extracts.