Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Psychiatry ; 28(4): 1647-1663, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36117209

RESUMO

Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.


Assuntos
Apraxias , Distúrbios da Fala , Criança , Humanos , Distúrbios da Fala/genética , Apraxias/genética , Mapeamento Cromossômico , Causalidade , Encéfalo , Histona-Lisina N-Metiltransferase
2.
Epilepsia ; 62(1): e22-e28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207017

RESUMO

Ring chromosomes occur when the ends of normally rod-shaped chromosomes fuse. In ring chromosome 20 (ring 20), intellectual disability and epilepsy are usually present, even if there is no deleted coding material; the mechanism by which individuals with complete ring chromosomes develop seizures and other phenotypic abnormalities is not understood. We investigated altered gene transcription as a contributing factor by performing RNA-sequencing (RNA-seq) analysis on blood from seven patients with ring 20, and 11 first-degree relatives (all parents). Geographic analysis did not identify altered expression in peritelomeric or other specific chromosome 20 regions. RNA-seq analysis revealed 97 genes potentially differentially expressed in ring 20 patients. These included one epilepsy gene, NPRL3, but this finding was not confirmed on reverse transcription Droplet Digital polymerase chain reaction analysis. Molecular studies of structural chromosomal anomalies such as ring chromosome are challenging and often difficult to interpret because many patients are mosaic, and there may be genome-wide chromosomal instability affecting gene expression. Our findings nevertheless suggest that peritelomeric altered transcription is not the likely pathogenic mechanism in ring 20. Underlying genetic mechanisms are likely complex and may involve differential expression of many genes, the majority of which may not be located on chromosome 20.


Assuntos
Epilepsia Resistente a Medicamentos/genética , Perfilação da Expressão Gênica , Expressão Gênica/genética , Deficiência Intelectual/genética , Cromossomos em Anel , Adulto , Criança , Família , Feminino , Proteínas Ativadoras de GTPase/genética , Ontologia Genética , Humanos , Masculino , RNA-Seq , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
4.
Neurology ; 96(18): e2251-e2260, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34038384

RESUMO

OBJECTIVE: To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. METHODS: We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated. Targeted resequencing was performed on 278 patients with febrile seizures or GEFS+ phenotypes. Variants were validated and familial segregation examined by Sanger sequencing. RESULTS: Eight previously unreported missense variants were identified in SLC32A1, coding for the vesicular inhibitory amino acid cotransporter VGAT. Two variants cosegregated with the phenotype in 2 large GEFS+ families containing 8 and 10 affected individuals, respectively. Six further variants were identified in smaller families with GEFS+ or idiopathic generalized epilepsy (IGE). CONCLUSION: Missense variants in SLC32A1 cause GEFS+ and IGE. These variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition. Examination of further epilepsy cohorts will determine the full genotype-phenotype spectrum associated with SLC32A1 variants.


Assuntos
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Variação Genética/genética , Mutação de Sentido Incorreto/genética , Convulsões Febris/diagnóstico , Convulsões Febris/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem
5.
Neuron ; 104(4): 665-679.e8, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31585809

RESUMO

In humans, disruption of nonsense-mediated decay (NMD) has been associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorder and intellectual disability. However, the mechanism by which deficient NMD leads to neurodevelopmental dysfunction remains unknown, preventing development of targeted therapies. Here we identified novel protein-coding UPF2 (UP-Frameshift 2) variants in humans with NDD, including speech and language deficits. In parallel, we found that mice lacking Upf2 in the forebrain (Upf2 fb-KO mice) show impaired NMD, memory deficits, abnormal long-term potentiation (LTP), and social and communication deficits. Surprisingly, Upf2 fb-KO mice exhibit elevated expression of immune genes and brain inflammation. More importantly, treatment with two FDA-approved anti-inflammatory drugs reduced brain inflammation, restored LTP and long-term memory, and reversed social and communication deficits. Collectively, our findings indicate that impaired UPF2-dependent NMD leads to neurodevelopmental dysfunction and suggest that anti-inflammatory agents may prove effective for treatment of disorders with impaired NMD.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Animais , Criança , Drosophila , Feminino , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA