Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1849(1): 44-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25464035

RESUMO

The human clusterin (CLU) gene codes for several mRNAs characterized by different sequences at their 5' end. We investigated the expression of two CLU mRNAs, called CLU 1 and CLU 2, in immortalized (PNT1a) and tumorigenic (PC3 and DU145) prostate epithelial cells, as well as in normal fetal fibroblasts (WI38) following the administration of the epigenetic drugs 5-aza-2'-deoxycytidine (AZDC) and trichostatin A (TSA) given either as single or combined treatment (AZDC-TSA). Our experimental evidences show that: a) CLU 1 is the most abundant transcript variant. b) CLU 2 is expressed at a low level in normal fibroblasts and virtually absent in prostate cancer cells. c) CLU 1, and to a greater extent CLU 2 expression, increased by AZDC-TSA treatment in prostate cancer cells. d) Both CLU 1 and CLU 2 encode for secreted CLU. e) P2, a novel promoter that overlaps the CLU 2 Transcription Start Site (TSS), drives CLU 2 expression. f) A CpG island, methylated in prostate cancer cells and not in normal fibroblasts, is responsible for long-term heritable regulation of CLU 1 expression. g) ChIP assay of histone tail modifications at CLU promoters (P1 and P2) shows that treatment of prostate cancer cells with AZDC-TSA causes enrichment of Histone3(Lys9)acetylated (H3K9ac) and reduction of Histone3(Lys27)trimethylated (H3K27me3), inducing active transcription of both CLU variants. In conclusion, we show for the first time that the expression of CLU 2 mRNA is driven by a novel promoter, P2, whose activity responds to epigenetic drugs treatment through changes in histone modifications.


Assuntos
Clusterina/biossíntese , Epigênese Genética , Neoplasias da Próstata/genética , RNA Mensageiro/biossíntese , Linhagem Celular Tumoral , Ilhas de CpG/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Regiões Promotoras Genéticas , Neoplasias da Próstata/patologia
2.
Adv Cancer Res ; 104: 9-23, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19878770

RESUMO

Clusterin (CLU) has kept many researchers engaged for a long time since its first discovery and characterization in the attempt to unravel its biological role in mammals. Although there is a general consensus on the fact that CLU is supposed to play important roles in nearly all fundamental biological phenomena and in many human diseases including cancer, after about 10 years of work CLU has been defined as an "enigmatic" protein. This sense of frustration among the researchers is originated by the fact that, despite considerable scientific production concerning CLU, there is still a lack of basic information about the complex regulation of its expression. The CLU gene is a single 9-exon gene expressed at very different levels in almost all major tissues in mammals. The gene produces at least three protein forms with different subcellular localization and diverse biological functions. The molecular mechanism of production of these protein forms remains unclear. The best known is the glycosylated mature form of CLU (sCLU), secreted with very big quantitative differences at different body sites. Hormones and growth factors are the most important regulators of CLU gene expression. Before 2006, it was believed that a unique transcript of about 1.9 kb was originated by transcription of the CLU gene. Now we know that alternative transcriptional initiation, possibly driven by two distinct promoters, may produce at least two distinct CLU mRNA isoforms differing in their unique first exon, named Isoform 1 and Isoform 2. A third transcript, named Isoform 11036, has been recently found as one of the most probable mRNA variants. Approaches like cloning, expression, and functional characterization of the different CLU protein products have generated a critical mass of information teaching us an important lesson about CLU gene expression regulation. Nevertheless, further studies are necessary to better understand the tissue-specific regulation of CLU expression and to identify the specific signals triggering the expression of different/alternative transcript isoforms and protein forms in different cell types at appropriate time.


Assuntos
Clusterina/genética , Regulação da Expressão Gênica , Animais , Clusterina/biossíntese , Humanos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA