Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613664

RESUMO

Silica (either crystalline or amorphous) is widely used for different applications and its toxicological assessment depends on its characteristics and intended use. As sustained inflammation induced by crystalline silica is at the root of silicosis, investigating the inflammatory effects induced by amorphous silicas and their persistence is needed. For the development of new grades of synthetic amorphous silicas, it is also desirable to be able to understand better the factors underlying potential adverse effects. Therefore, we used an optimized in vitro macrophage system to investigate the effects of amorphous silicas, and their persistence. By using different amorphous silicas, we demonstrated that the main driver for the adverse effects is a low size of the overall particle/agglomerate; the second driver being a low size of the primary particle. We also demonstrated that the effects were transient. By using silicon dosage in cells, we showed that the transient effects are coupled with a decrease of intracellular silicon levels over time after exposure. To further investigate this phenomenon, a mild enzymatic cell lysis allowed us to show that amorphous silicas are degraded in macrophages over time, explaining the decrease in silicon content and thus the transiency of the effects of amorphous silicas on macrophages.


Assuntos
Dióxido de Silício , Silicose , Humanos , Silício , Macrófagos
2.
Proteomics ; 16(22): 2864-2877, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27723244

RESUMO

The physiology of cells cultured in vitro depends obviously on the external conditions, including the nutrients present in the culture medium. In order to test the influence of this parameter, J774 macrophages grown either in RPMI or in DMEM were compared by a combination of targeted analyses and a proteomic approach. The two media differ in their glucose, amino acids, and vitamins concentrations, but there were no significant differences in the cell cycle or in the percentage of phagocytic cells in both media, although the phagocytic capacity (i.e. the number of phagocytized particles) was higher in DMEM. Conversely, we found that J774 cells grown in RPMI produced more nitric oxide in response to lipopolysaccharide. The proteomic study highlighted differences affecting the central metabolism and nucleotide metabolism, cytoskeleton, protein degradation, and cell signaling. Furthermore, proteomics showed that J774 cells grown in RPMI or in DMEM and exposed to copper oxide nanoparticles respond rather differently, with only a few proteins similarly modulated between cells grown in both media. Taken together, our results show that the basal state of cells grown in two different media is different, and this may affect the way they respond to an external stimulus or stress.


Assuntos
Cobre/metabolismo , Macrófagos/efeitos dos fármacos , Nanopartículas/metabolismo , Proteoma/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Fagocitose/efeitos dos fármacos , Proteômica
3.
Mol Cell Proteomics ; 12(11): 3108-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23882024

RESUMO

The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents.


Assuntos
Cobre/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Animais , Linhagem Celular , Células Cultivadas , Glutationa/metabolismo , Macrófagos/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas Mitocondriais/metabolismo , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Proteômica , Transdução de Sinais/efeitos dos fármacos
4.
Cell Mol Life Sci ; 70(22): 4385-97, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23760206

RESUMO

Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.


Assuntos
ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/metabolismo , Quebras de DNA de Cadeia Dupla , Pseudomonas aeruginosa/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Instabilidade Cromossômica , Reparo do DNA , Células HL-60 , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
5.
Front Immunol ; 14: 1092743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251378

RESUMO

Plastics are emerging pollutants of great concern. Macroplastics released in the environment degrade into microplastics and nanoplastics. Because of their small size, these micro and nano plastic particles can enter the food chain and contaminate humans with still unknown biological effects. Plastics being particulate pollutants, they are handled in the human body by scavenger cells such as macrophages, which are important players in the innate immune system. Using polystyrene as a model of micro and nanoplastics, with size ranging from under 100 nm to 6 microns, we have showed that although non-toxic, polystyrene nano and microbeads alter the normal functioning of macrophages in a size and dose-dependent manner. Alterations in the oxidative stress, lysosomal and mitochondrial functions were detected, as well as changes in the expression of various surface markers involved in the immune response such as CD11a/b, CD18, CD86, PD-L1, or CD204. For each beads size tested, the alterations were more pronounced for the cell subpopulation that had internalized the highest number of beads. Across beads sizes, the alterations were more pronounced for beads in the supra-micron range than for beads in the sub-micron range. Overall, this means that internalization of high doses of polystyrene favors the emergence of subpopulations of macrophages with an altered phenotype, which may not only be less efficient in their functions but also alter the fine balance of the innate immune system.


Assuntos
Poluentes Ambientais , Venenos , Humanos , Microplásticos/toxicidade , Poliestirenos , Plásticos , Macrófagos
6.
J Radiat Res ; 64(2): 304-316, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36680763

RESUMO

Irradiated cells can propagate signals to neighboring cells. Manifestations of these so-called bystander effects (BEs) are thought to be relatively more important after exposure to low- vs high-dose radiation and can be mediated via the release of secreted molecules, including inflammatory cytokines, from irradiated cells. Thus, BEs can potentially modify the inflammatory environment of irradiated cells. To determine whether these modifications could affect the functionality of bystander immune cells and their inflammatory response, we analyzed and compared the in vitro response of primary human fibroblasts and keratinocytes to low and high doses of radiation and assessed their ability to modulate the inflammatory activation of peripheral blood mononuclear cells (PBMCs). Only high-dose exposure resulted in either up- or down-regulation of selected inflammatory genes. In conditioned culture media transfer experiments, radiation-induced bystander signals elicited from irradiated fibroblasts and keratinocytes were found to modulate the transcription of inflammatory mediator genes in resting PBMCs, and after activation of PBMCs stimulated with lipopolysaccharide (LPS), a strong inflammatory agent. Radiation-induced BEs induced from skin cells can therefore act as a modifier of the inflammatory response of bystander immune cells and affect their functionality.


Assuntos
Efeito Espectador , Leucócitos Mononucleares , Humanos , Queratinócitos , Fibroblastos , Relação Dose-Resposta à Radiação
7.
Toxics ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36976964

RESUMO

The widespread use of silver nanoparticles (Ag NPs) in food and consumer products suggests the relevance of human oral exposure to these nanomaterials (NMs) and raises the possibility of adverse effects in the gastrointestinal tract. The aim of this study was to investigate the toxicity of Ag NPs in a human intestinal cell line, either uncoated or coated with polyvinylpyrrolidone (Ag PVP) or hydroxyethylcellulose (Ag HEC) and digested in simulated gastrointestinal fluids. Physicochemical transformations of Ag NPs during the different stages of in vitro digestion were identified prior to toxicity assessment. The strategy for evaluating toxicity was constructed on the basis of adverse outcome pathways (AOPs) showing Ag NPs as stressors. It consisted of assessing Ag NP cytotoxicity, oxidative stress, genotoxicity, perturbation of the cell cycle and apoptosis. Ag NPs caused a concentration-dependent loss of cell viability and increased the intracellular level of reactive oxygen species as well as DNA damage and perturbation of the cell cycle. In vitro digestion of Ag NPs did not significantly modulate their toxicological impact, except for their genotoxicity. Taken together, these results indicate the potential toxicity of ingested Ag NPs, which varied depending on their coating but did not differ from that of non-digested NPs.

8.
J Proteomics ; 250: 104389, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34601154

RESUMO

Some carboxydotrophs like Rhodospirillum rubrum are able to grow with CO as their sole source of energy using a Carbone monoxide dehydrogenase (CODH) and an Energy conserving hydrogenase (ECH) to perform anaerobically the so called water-gas shift reaction (WGSR) (CO + H2O → CO2 + H2). Several studies have focused at the biochemical and biophysical level on this enzymatic system and a few OMICS studies on CO metabolism. Knowing that CO is toxic in particular due to its binding to heme iron atoms, and is even considered as a potential antibacterial agent, we decided to use a proteomic approach in order to analyze R. rubrum adaptation in term of metabolism and management of the toxic effect. In particular, this study allowed highlighting a set of proteins likely implicated in ECH maturation, and important perturbations in term of cofactor biosynthesis, especially metallic cofactors. This shows that even this CO tolerant microorganism cannot avoid completely CO toxic effects associated with its interaction with metallic ions. SIGNIFICANCE: This proteomic study highlights the fact that even in a microorganism able to handle carbon monoxide and in some way detoxifying it via the intrinsic action of the carbon monoxide dehydrogenase (CODH), CO has important effects on metal homeostasis, metal cofactors and metalloproteins. These effects are direct or indirect via transcription regulation, and amplified by the high interdependency of cofactors biosynthesis.


Assuntos
Hidrogenase , Rhodospirillum rubrum , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Hidrogenase/metabolismo , Hidrogenase/farmacologia , Proteômica , Rhodospirillum rubrum/metabolismo
9.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35564134

RESUMO

Synthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNFα, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system.

10.
Front Immunol ; 13: 865239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928812

RESUMO

Pigments are among the oldest nanoparticulate products known to mankind, and their use in tattoos is also very old. Nowadays, 25% of American people aged 18 to 50 are tattooed, which poses the question of the delayed effects of tattoos. In this article, we investigated three cobalt [Pigment Violet 14 (purple color)] or cobalt alloy pigments [Pigment Blue 28 (blue color), Pigment Green 14 (green color)], and one zinc pigment [Pigment White 4 (white color)] which constitute a wide range of colors found in tattoos. These pigments contain microparticles and a significant proportion of submicroparticles or nanoparticles (in either aggregate or free form). Because of the key role of macrophages in the scavenging of particulate materials, we tested the effects of cobalt- and zinc-based pigments on the J774A.1 macrophage cell line. In order to detect delayed effects, we compared two exposure schemes: acute exposure for 24 hours and an exposure for 24 hours followed by a 3-day post-exposure recovery period. The conjunction of these two schemes allowed for the investigation of the delayed or sustained effects of pigments. All pigments induced functional effects on macrophages, most of which were pigment-dependent. For example, Pigment Green 19, Pigment Blue 28, and Pigment White 4 showed a delayed alteration of the phagocytic capacity of cells. Moreover, all the pigments tested induced a slight but significant increase in tumor necrosis factor secretion. This effect, however, was transitory. Conversely, only Pigment Blue 28 induced both a short and sustained increase in interleukin 6 secretion. Results showed that in response to bacterial stimuli (LPS), the secretion of tumor necrosis factor and interleukin 6 declined after exposure to pigments followed by a recovery period. For chemoattractant cytokines (MCP-1 or MIP-1α), delayed effects were observed with a secretion decreased in presence of Pigment Blue 28 and Pigment violet 14, both with or without LPS stimuli. The pigments also induced persisting changes in some important macrophage membrane markers such as CD11b, an integrin contributing to cell adhesion and immunological tolerance. In conclusion, the pigments induced functional disorders in macrophages, which, in some cases, persist long after exposure, even at non-toxic doses.


Assuntos
Cobalto , Interleucina-6 , Cobalto/toxicidade , Humanos , Lipopolissacarídeos , Macrófagos , Fator de Necrose Tumoral alfa , Zinco
11.
Proteomics ; 11(2): 324-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21204259

RESUMO

Fluorescent detection of proteins is a popular method of detection allying sensitivity, linearity and compatibility with mass spectrometry. Among the numerous methods described in the literature, staining with ruthenium II tris(bathophenanthroline disulfonate) is particularly cost-effective, but slightly cumbersome owing to difficulties in the preparation of the complex and complexity of staining protocols. We describe here the modifications on both aspects that allow to perform a higher contrast staining and offer a more robust method of complex preparation, thereby maximizing the advantages of the method.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Corantes Fluorescentes/análise , Compostos Organometálicos/análise , Proteínas/análise , Animais , Linhagem Celular , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional/economia , Humanos , Proteoma/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Biochem J ; 430(2): 237-44, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20590529

RESUMO

Recent reports have evidenced a role for MEF2C (myocyte enhancer factor 2C) in myelopoiesis, although the precise functions of this transcription factor are still unclear. We show in the present study that MEF2A and MEF2D, two other MEF2 family members, are expressed in human primary monocytes and in higher amounts in monocyte-derived macrophages. High levels of MEF2A-MEF2D heterodimers are found in macrophage-differentiated HL60 cells. Chromatin immunoprecipitations demonstrate that MEF2A is present on the c-Jun promoter, both in undifferentiated and in macrophage-differentiated cells. Moreover, c-Jun expression is derepressed in undifferentiated cells in the presence of HDAC (histone deacetylase) inhibitor, indicating the importance of chromatin acetylation in this process. We show that MEF2A/D dimers strongly interact with HDAC1, and to a lesser extent with HDAC7 in macrophages, whereas low levels of MEF2A/D-HDAC1 complexes are found in undifferentiated cells or in monocytes. Since trichostatin A does not disrupt MEF2A/D-HDAC1 complexes, we analysed the potential interaction of MEF2A with p300 histone acetyltransferase, whose expression is up-regulated in macrophages. Interestingly, endogenous p300 only associates with MEF2A in differentiated macrophages, indicating that MEF2A/D could activate c-Jun expression in macrophages through a MEF2A/D-p300 activator complex. The targets of MEF2A/D-HDAC1-HDAC7 multimers remain to be identified. Nevertheless, these data highlight for the first time the possible dual roles of MEF2A and MEF2D in human macrophages, as activators or as repressors of gene transcription.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Proteínas de Domínio MADS/metabolismo , Macrófagos/citologia , Fatores de Regulação Miogênica/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Proteínas de Domínio MADS/genética , Fatores de Transcrição MEF2 , Macrófagos/metabolismo , Fatores de Regulação Miogênica/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ativação Transcricional
13.
PLoS One ; 16(5): e0252450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048472

RESUMO

Except cells circulating in the bloodstream, most cells in vertebrates are adherent. Studying the repercussions of adherence per se in cell physiology is thus very difficult to carry out, although it plays an important role in cancer biology, e.g. in the metastasis process. In order to study how adherence impacts major cell functions, we used a murine macrophage cell line. Opposite to the monocyte/macrophage system, where adherence is associated with the acquisition of differentiated functions, these cells can be grown in both adherent or suspension conditions without altering their differentiated functions (phagocytosis and inflammation signaling). We used a proteomic approach to cover a large panel of proteins potentially modified by the adherence status. Targeted experiments were carried out to validate the proteomic results, e.g. on metabolic enzymes, mitochondrial and cytoskeletal proteins. The mitochondrial activity was increased in non-adherent cells compared with adherent cells, without differences in glucose consumption. Concerning the cytoskeleton, a rearrangement of the actin organization (filopodia vs sub-cortical network) and of the microtubule network were observed between adherent and non-adherent cells. Taken together, these data show the mechanisms at play for the modification of the cytoskeleton and also modifications of the metabolic activity between adherent and non-adherent cells.


Assuntos
Adesão Celular/fisiologia , Proteômica/métodos , Animais , Ciclo Celular , Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional , Hexoquinase/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Óxido Nítrico/metabolismo , Fagocitose , Células RAW 264.7
14.
J Proteomics ; 239: 104178, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662612

RESUMO

Copper is an essential metal for life, but is toxic at high concentrations. In mammalian cells, two copper transporters are known, CTR1 and CTR2. In order to gain insights on the possible influence of the import pathway on cellular responses to copper, two copper challenges were compared: one with copper ion, which is likely to use preferentially CTR1, and one with a copper-polyacrylate complex, which will be internalized via the endosomal pathway and is likely to use preferentially CTR2. A model system consisting in the J774A1 mouse macrophage system, with a strong endosomal/lysosomal pathway, was used. In order to gain wide insights into the cellular responses to copper, a proteomic approach was used. The proteomic results were validated by targeted experiments, and showed differential effects of the import mode on cellular physiology parameters. While the mitochondrial transmembrane potential was kept constant, a depletion in the free glutahione content was observed with copper (ion and polylacrylate complex). Both copper-polyacrylate and polyacrylate induced perturbations in the cytoskeleton and in phagocytosis. Inflammatory responses were also differently altered by copper ion and copper-polyacrylate. Copper-polyacrylate also perturbed several metabolic enzymes. Lastly, enzymes were used as a test set to assess the predictive value of proteomics. SIGNIFICANCE: Proteomic profiling provides an in depth analysis of the alterations induced on cells by copper under two different exposure modes to this metal, namely as the free ion or as a complex with polyacrylate. The cellular responses were substantially different between the two exposure modes, although some cellular effects are shared, such as the depletion in free glutathione. Targeted experiments were used to confirm the proteomic results. Some metabolic enzymes showed altered activities after exposure to the copper-polyacrylate complex. The basal inflammatory responses were different for copper ion and for the copper-polyacrylate complex, while the two forms of copper inhibited lipopolysaccharide-induced inflammatory responses.


Assuntos
Proteínas de Transporte de Cátions , Cobre , Animais , Cobre/metabolismo , Cobre/farmacologia , Glutationa/metabolismo , Macrófagos/metabolismo , Camundongos , Proteômica
15.
Nanomaterials (Basel) ; 10(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012675

RESUMO

Synthetic amorphous silica is used in various applications such as cosmetics, food, or rubber reinforcement. These broad uses increase human exposure, and thus the potential risk related to their short- and long-term toxicity for both consumers and workers. These potential risks have to be investigated, in a global context of multi-exposure, as encountered in human populations. However, most of the in vitro research on the effects of amorphous silica has been carried out in an acute exposure mode, which is not the most relevant when trying to assess the effects of occupational exposure. As a first step, the effects of repeated exposure of macrophages to silica nanomaterials have been investigated. The experiments have been conducted on in vitro macrophage cell line RAW264.7 (cell line from an Abelson murine leukemia virus-induced tumor), as this cell type is an important target cell in toxicology of particulate materials. The bioaccumulation of nanomaterials and the persistence of their effects have been studied. The experiments carried out include the viability assay and functional tests (phagocytosis, NO and reactive oxygen species dosages, and production of pro- and anti-inflammatory cytokines) using flow cytometry, microscopy and spectrophotometry. Accumulation of silica nanoparticles (SiO2 NP) was observed in both exposure scenarii. However, differences in the biological effects between the exposure scenarii have also been observed. For phagocytosis, NO production and Tumor Necrosis Factor (TNF) release, repeated exposure tended to induce fewer effects than acute exposure. Nevertheless, repeated exposure still induces alterations in the macrophage responses and thus represents a scenario to be tested in detail.

16.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003391

RESUMO

Synthetic amorphous silica is one of the most used nanomaterials, and numerous toxicological studies have studied its effects. Most of these studies have used an acute exposure mode to investigate the effects immediately after exposure. However, this exposure modality does not allow the investigation of the persistence of the effects, which is a crucial aspect of silica toxicology, as exemplified by crystalline silica. In this paper, we extended the investigations by studying not only the responses immediately after exposure but also after a 72 h post-exposure recovery phase. We used a pyrolytic silica as the test nanomaterial, as this variant of synthetic amorphous silica has been shown to induce a more persistent inflammation in vivo than precipitated silica. To investigate macrophage responses to pyrolytic silica, we used a combination of proteomics and targeted experiments, which allowed us to show that most of the cellular functions that were altered immediately after exposure to pyrolytic silica at a subtoxic dose, such as energy metabolism and cell morphology, returned to normal at the end of the recovery period. However, some alterations, such as the inflammatory responses and some aldehyde detoxification proteins, were persistent. At the proteomic level, other alterations, such as proteins implicated in the endosomal/lysosomal pathway, were also persistent but resulted in normal function, thus suggesting cellular adaptation.

17.
Nanomaterials (Basel) ; 10(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033329

RESUMO

Iron oxide nanoparticles/microparticles are widely present in a variety of environments, e.g., as a byproduct of steel and iron degradation, as, for example, in railway brakes (e.g., metro station) or in welding fumes. As all particulate material, these metallic nanoparticles are taken up by macrophages, a cell type playing a key role in the innate immune response, including pathogen removal phagocytosis, secretion of free radical species such as nitric oxide or by controlling inflammation via cytokine release. In this paper, we evaluated how macrophages functions were altered by two iron based particles of different size (100 nm and 20 nm). We showed that at high, but subtoxic concentrations (1 mg/mL, large nanoparticles induced stronger perturbations in macrophages functions such as phagocytic capacity (tested with fluorescent latex microspheres) and the ability to respond to bacterial endotoxin lipopolysaccharide stimulus (LPS) in secreting nitric oxide and pro-cytokines (e.g., Interleukin-6 (IL-6) and Tumor Necrosis Factor (TNF)). These stronger effects may correlate with an observed stronger uptake of iron for the larger nanoparticles.

18.
Proteomes ; 7(2)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238524

RESUMO

Metal-containing drugs have long been used in anticancer therapies. The mechansims of action of platinum-based drugs are now well-understood, which cannot be said of drugs containing other metals, such as gold or copper. To gain further insights into such mechanisms, we used a classical proteomic approach based on two-dimensional elelctrophoresis to investigate the mechanisms of action of a hydroxyquinoline-copper complex, which shows promising anticancer activities, using the leukemic cell line RAW264.7 as the biological target. Pathway analysis of the modulated proteins highlighted changes in the ubiquitin/proteasome pathway, the mitochondrion, the cell adhesion-cytoskeleton pathway, and carbon metabolism or oxido-reduction. In line with these prteomic-derived hypotheses, targeted validation experiments showed that the hydroxyquinoline-copper complex induces a massive reduction in free glutathione and a strong alteration in the actin cytoskeleton, suggesting a multi-target action of the hydroxyquinoline-copper complex on cancer cells.

19.
Stem Cell Reports ; 12(1): 98-111, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30595547

RESUMO

Exogenous cues involved in the regulation of the initial steps of lymphatic endothelial development remain largely unknown. We have used an in vitro model based on the co-culture of vascular precursors derived from mouse embryonic stem cell (ESC) differentiation and OP9 stromal cells to examine the first steps of lymphatic specification and expansion. We found that bone morphogenetic protein 9 (BMP9) induced a dose-dependent biphasic effect on ESC-derived vascular precursors. At low concentrations, below 1 ng/mL, BMP9 expands the LYVE-1-positive lymphatic progeny and activates the calcineurin phosphatase/NFATc1 signaling pathway. In contrast, higher BMP9 concentrations preferentially enhance the formation of LYVE-1-negative endothelial cells. This effect results from an OP9 stromal cell-mediated VEGF-A secretion. RNA-silencing experiments indicate specific involvement of ALK1 and ALK2 receptors in these different BMP9 responses. BMP9 at low concentrations may be a useful tool to generate lymphatic endothelial cells from stem cells for cell-replacement strategies.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Fator 2 de Diferenciação de Crescimento/farmacologia , Linfangiogênese , Células-Tronco Embrionárias Murinas/citologia , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Calcineurina/metabolismo , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Vasos Linfáticos/citologia , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Nanoscale ; 11(19): 9341-9352, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30950461

RESUMO

Many solid tumors and their metastases are still resistant to current cancer treatments such as chemo- and radiotherapy. The presence of a small population of Cancer Stem Cells in tumors is held responsible for relapses. Moreover, the various physical barriers of the organism (e.g. blood-brain barrier) prevent many drugs from reaching the target cells. In order to alleviate this constraint, we suggest a Trojan horse strategy consisting of intravascular injection of macrophages loaded with therapeutic nanoparticles (an iron nanoparticle-based solution marketed under the name of FERINJECT®) to bring a high quantity of the latter to the tumor. The aim of this article is to assess the response of primary macrophages to FERINJECT® via functional assays in order to ensure that the macrophages loaded with these nanoparticles are still relevant for our strategy. Following this first step, we demonstrate that the loaded macrophages injected into the bloodstream are able to migrate to the tumor site using small-animal imaging. Finally, using synchrotron radiation, we validate an improvement of the radiotherapeutic effect when FERINJECT®-laden macrophages are deposited at the vicinity of cancer cells and irradiated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA