Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Langmuir ; 33(25): 6427-6438, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28585832

RESUMO

Chlorosomes are one of the characteristic light-harvesting antennas from green sulfur bacteria. These complexes represent a unique paradigm: self-assembly of bacteriochlorophyll pigments within a lipid monolayer without the influence of protein. Because of their large size and reduced complexity, they have been targeted as models for the development of bioinspired light-harvesting arrays. We report the production of biohybrid light-harvesting nanocomposites mimicking chlorosomes, composed of amphiphilic diblock copolymer membrane bodies that incorporate thousands of natural self-assembling bacteriochlorophyll molecules derived from green sulfur bacteria. The driving force behind the assembly of these polymer-chlorosome nanocomposites is the transfer of the mixed raw materials from the organic to the aqueous phase. We incorporated up to five different self-assembling pigment types into single nanocomposites that mimic chlorosome morphology. We establish that the copolymer-BChl self-assembly process works smoothly even when non-native combinations of BChl homologues are included. Spectroscopic characterization revealed that the different types of self-assembling pigments participate in ultrafast energy transfer, expanding beyond single chromophore constraints of the natural chlorosome system. This study further demonstrates the utility of flexible short-chain, diblock copolymers for building scalable, tunable light-harvesting arrays for technological use and allows for an in vitro analysis of the flexibility of natural self-assembling chromophores in unique and controlled combinations.


Assuntos
Nanocompostos , Proteínas de Bactérias , Bacterioclorofilas , Transferência de Energia , Organelas , Polímeros
2.
Photosynth Res ; 127(1): 117-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26216497

RESUMO

The photosynthetic membranes of the filamentous anoxygenic phototroph Roseiflexus castenholzii have been studied with electron microscopy, atomic force microscopy, and biochemistry. Electron microscopy of the light-harvesting reaction center complex produced a 3D model that aligns with the solved crystal structure of the RC-LH1 from Thermochromatium tepidum with the H subunit removed. Atomic force microscopy of the whole membranes yielded a picture of the supramolecular organization of the major proteins in the photosynthetic electron transport chain. The results point to a loosely packed membrane without accessory antenna proteins or higher order structure.


Assuntos
Membrana Celular/química , Chloroflexi/química , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/química , Chloroflexi/metabolismo , Chromatiaceae/química , Heme/análise , Imageamento Tridimensional , Proteínas de Membrana/análise , Proteínas de Membrana/química , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/métodos , Fotossíntese
3.
Nano Lett ; 15(4): 2422-8, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25719733

RESUMO

We report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. This study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

4.
Plant J ; 76(6): 1074-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118159

RESUMO

Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes.


Assuntos
Capsicum/ultraestrutura , Carotenoides/metabolismo , Frutas/ultraestrutura , Plastídeos/ultraestrutura , Capsicum/metabolismo , Carotenoides/análise , Frutas/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Análise Multivariada , Fenótipo , Plastídeos/metabolismo , Especificidade da Espécie
5.
Photosynth Res ; 121(2-3): 311-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24844569

RESUMO

Carbon concentrating mechanisms (CCMs) are common among microalgae, but their regulation and even existence in some of the most promising biofuel production strains is poorly understood. This is partly because screening for new strains does not commonly include assessment of CCM function or regulation despite its fundamental role in primary carbon metabolism. In addition, the inducible nature of many microalgal CCMs means that environmental conditions should be considered when assessing CCM function and its potential impact on biofuels. In this study, we address the effect of environmental conditions by combining novel, high frequency, on-line (13)CO2 gas exchange screen with microscope-based lipid characterization to assess CCM function in Nannochloropsis salina and its interaction with lipid production. Regulation of CCM function was explored by changing the concentration of CO2 provided to continuous cultures in airlift bioreactors where cell density was kept constant across conditions by controlling the rate of media supply. Our isotopic gas exchange results were consistent with N. salina having an inducible "pump-leak" style CCM similar to that of Nannochloropsis gaditana. Though cells grew faster at high CO2 and had higher rates of net CO2 uptake, we did not observe significant differences in lipid content between conditions. Since the rate of CO2 supply was much higher for the high CO2 conditions, we calculated that growing cells bubbled with low CO2 is about 40 % more efficient for carbon capture than bubbling with high CO2. We attribute this higher efficiency to the activity of a CCM under low CO2 conditions.


Assuntos
Carbono/metabolismo , Microalgas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese
6.
Biotechnol Bioeng ; 111(9): 1748-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24931928

RESUMO

Biofuels derived from the mass cultivation of algae represent an emerging industry that aims to partially displace petroleum based fuels. Outdoor, open-pond, and raceway production facilities are attractive options for the mass culture of algae however, this mode of cultivation leaves the algae susceptible to epidemics from a variety of environmental challenges. Infestations can result in complete collapse of the algal populations and destruction of their valuable products making it paramount to understand the host-pathogen relationships of known algal pests in order to develop mitigation strategies. In the present work, we characterize the spatial-temporal response of photosynthetic pigments in Scenedesmus dimorphus to infection from Amoeboaphelidium protococcarum, a destructive endoparasite, with the goal of understanding the potential for early detection of infection via host pigment changes. We employed a hyperspectral confocal fluorescence microscope to quantify these changes in pigmentation with high spatial and spectral resolution during early parasite infection. Carotenoid abundance and autofluorescence increased within the first 24 h of infection while chlorophyll emission remained constant. Changes in host cell photosynthesis and bulk chlorophyll content were found to lag behind parasite replication. The results herein raise the possibility of using host-cell pigment changes as indicators of nascent parasite infection.


Assuntos
Parasitos/crescimento & desenvolvimento , Pigmentos Biológicos/análise , Scenedesmus/parasitologia , Animais , Clorofila/análise , Microscopia Confocal/métodos , Fotossíntese
7.
Appl Opt ; 53(24): F31-45, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25321139

RESUMO

We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours.


Assuntos
Aquicultura/métodos , Clorófitas/classificação , Colorimetria/métodos , Cianobactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Fotometria/métodos , Análise Espectral/métodos , Algoritmos
8.
J Photochem Photobiol B ; 254: 112891, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555841

RESUMO

Chlorosomes of green photosynthetic bacteria are large light-harvesting complexes enabling these organisms to survive at extremely low-light conditions. Bacteriochlorophylls found in chlorosomes self-organize and are ideal candidates for use in biomimetic light-harvesting in artificial photosynthesis and other applications for solar energy utilization. Here we report on the construction and characterization of an artificial antenna consisting of bacteriochlorophyll c co-aggregated with ß-carotene, which is used to extend the light-harvesting spectral range, and bacteriochlorophyll a, which acts as a final acceptor for excitation energy. Efficient energy transfer between all three components was observed by means of fluorescence spectroscopy. The efficiency varies with the ß-carotene content, which increases the average distance between the donor and acceptor in both energy transfer steps. The efficiency ranges from 89 to 37% for the transfer from ß-carotene to bacteriochlorophyll c, and from 93 to 69% for the bacteriochlorophyll c to bacteriochlorophyll a step. A significant part of this study was dedicated to a development of methods for determination of energy transfer efficiency. These methods may be applied also for study of chlorosomes and other pigment complexes.


Assuntos
Bacterioclorofila A , Bacterioclorofilas , Bacterioclorofilas/química , Bacterioclorofila A/química , beta Caroteno , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/metabolismo , Transferência de Energia , Fotossíntese
9.
J Bacteriol ; 195(8): 1727-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396908

RESUMO

Chlorosomes are large light-harvesting complexes found in three phyla of anoxygenic photosynthetic bacteria. Chlorosomes are primarily composed of self-assembling pigment aggregates. In addition to the main pigment, bacteriochlorophyll c, d, or e, chlorosomes also contain variable amounts of carotenoids. Here, we use X-ray scattering and electron cryomicroscopy, complemented with absorption spectroscopy and pigment analysis, to compare the morphologies, structures, and pigment compositions of chlorosomes from Chloroflexus aurantiacus grown under two different light conditions and Chlorobaculum tepidum. High-purity chlorosomes from C. aurantiacus contain about 20% more carotenoid per bacteriochlorophyll c molecule when grown under low light than when grown under high light. This accentuates the light-harvesting function of carotenoids, in addition to their photoprotective role. The low-light chlorosomes are thicker due to the overall greater content of pigments and contain domains of lamellar aggregates. Experiments where carotenoids were selectively extracted from intact chlorosomes using hexane proved that they are located in the interlamellar space, as observed previously for species belonging to the phylum Chlorobi. A fraction of the carotenoids are localized in the baseplate, where they are bound differently and cannot be removed by hexane. In C. tepidum, carotenoids cannot be extracted by hexane even from the chlorosome interior. The chemical structure of the pigments in C. tepidum may lead to π-π interactions between carotenoids and bacteriochlorophylls, preventing carotenoid extraction. The results provide information about the nature of interactions between bacteriochlorophylls and carotenoids in the protein-free environment of the chlorosome interior.


Assuntos
Carotenoides/química , Chloroflexus/metabolismo , Luz , Ficobiliproteínas/química , Ficobiliproteínas/fisiologia , Cromatóforos Bacterianos , Carotenoides/metabolismo , Chloroflexus/citologia , Estrutura Molecular , Organelas/fisiologia , Pigmentos Biológicos , Difração de Raios X
10.
Plant Physiol ; 158(4): 1600-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22331410

RESUMO

Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, which drive the oxidation of water and the reduction of NADP+, respectively. While thylakoid morphology has been studied in some strains of cyanobacteria, the global distribution of PSI and PSII within the thylakoid membrane and the corresponding location of the light-harvesting phycobilisomes are not known in detail, and such information is required to understand the functioning of cyanobacterial photosynthesis on a larger scale. Here, we have addressed this question using a combination of electron microscopy and hyperspectral confocal fluorescence microscopy in wild-type Synechocystis species PCC 6803 and a series of mutants in which phycobilisomes are progressively truncated. We show that as the phycobilisome antenna is diminished, large-scale changes in thylakoid morphology are observed, accompanied by increased physical segregation of the two photosystems. Finally, we quantified the emission intensities originating from the two photosystems in vivo on a per cell basis to show that the PSI:PSII ratio is progressively decreased in the mutants. This results from both an increase in the amount of photosystem II and a decrease in the photosystem I concentration. We propose that these changes are an adaptive strategy that allows cells to balance the light absorption capabilities of photosystems I and II under light-limiting conditions.


Assuntos
Mutação/genética , Fotossíntese , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura , Análise Multivariada , Fenilalanina Amônia-Liase/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Ficocianina/metabolismo , Análise Espectral , Synechocystis/enzimologia
11.
Photosynth Res ; 118(1-2): 17-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24132812

RESUMO

Photosynthetic organisms rely on antenna systems to harvest and deliver energy from light to reaction centers. In fluctuating photic environments, regulation of light harvesting is critical for a photosynthetic organism's survival. Here, we describe the use of a suite of phycobilisome mutants to probe the consequences of antenna truncation in the cyanobacterium Synechocystis sp. PCC 6803. Studies using transmission electron microscopy (TEM), hyperspectral confocal fluorescence microscopy (HCFM), small-angle neutron scattering (SANS), and an optimized photobioreactor system have unraveled the adaptive strategies that cells employ to compensate for antenna reduction. As the phycobilisome antenna size decreased, changes in thylakoid morphology were more severe and physical segregation of the two photosystems increased. Repeating distances between thylakoid membranes measured by SANS were correlated with TEM data, and corresponded to the degree of phycobilisome truncation. Thylakoid membranes were found to have a high degree of structural flexibility, and changes in the membrane system upon illumination were rapid and reversible. Phycobilisome truncation in Synechocystis 6803 reduced the growth rate and lowered biomass accumulation. Together, these results lend a dynamic perspective to the intracellular membrane organization in cyanobacteria cells and suggest an adaptive mechanism that allows cells to adjust to altered light absorption capabilities, while highlighting the cell-wide implications of antenna truncation.


Assuntos
Ficobilissomas/fisiologia , Synechocystis/fisiologia , Tilacoides/fisiologia , Fotossíntese , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura
12.
Biochim Biophys Acta ; 1807(3): 262-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21126505

RESUMO

The kinetics and thermodynamics of the photochemical reactions of the purified reaction center (RC)-cytochrome (Cyt) complex from the chlorosome-lacking, filamentous anoxygenic phototroph, Roseiflexus castenholzii are presented. The RC consists of L- and M-polypeptides containing three bacteriochlorophyll (BChl), three bacteriopheophytin (BPh) and two quinones (Q(A) and Q(B)), and the Cyt is a tetraheme subunit. Two of the BChls form a dimer P that is the primary electron donor. At 285K, the lifetimes of the excited singlet state, P*, and the charge-separated state P(+)H(A)(-) (where H(A) is the photoactive BPh) were found to be 3.2±0.3 ps and 200±20 ps, respectively. Overall charge separation P*→→ P(+)Q(A)(-) occurred with ≥90% yield at 285K. At 77K, the P* lifetime was somewhat shorter and the P(+)H(A)(-) lifetime was essentially unchanged. Poteniometric titrations gave a P(865)/P(865)(+) midpoint potential of +390mV vs. SHE. For the tetraheme Cyt two distinct midpoint potentials of +85 and +265mV were measured, likely reflecting a pair of low-potential hemes and a pair of high-potential hemes, respectively. The time course of electron transfer from reduced Cyt to P(+) suggests an arrangement where the highest potential heme is not located immediately adjacent to P. Comparisons of these and other properties of isolated Roseiflexus castenholzii RCs to those from its close relative Chloroflexus aurantiacus and to RCs from the purple bacteria are made.


Assuntos
Chloroflexus/metabolismo , Transporte de Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Chloroflexus/química , Citocromos/metabolismo , Heme , Cinética , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Termodinâmica
13.
Photosynth Res ; 111(1-2): 149-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21792612

RESUMO

The light-harvesting core complex of the thermophilic filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii is intrinsic to the cytoplasmic membrane and intimately bound to the reaction center (RC). Using ultrafast transient absorption and time-resolved fluorescence spectroscopy with selective excitation, energy transfer, and trapping dynamics in the core complex have been investigated at room temperature in both open and closed RCs. Results presented in this report revealed that the excited energy transfer from the BChl 800 to the BChl 880 band of the antenna takes about 2 ps independent of the trapping by the RC. The time constants for excitation quenching in the core antenna BChl 880 by open and closed RCs were found to be 60 and 210 ps, respectively. Assuming that the light harvesting complex is generally similar to LH1 of purple bacteria, the possible structural and functional aspects of this unique antenna complex are discussed. The results show that the core complex of Roseiflexus castenholzii contains characteristics of both purple bacteria and Chloroflexus aurantiacus.


Assuntos
Bacterioclorofilas/química , Chloroflexi/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/isolamento & purificação , Bacterioclorofilas/metabolismo , Chloroflexi/metabolismo , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Complexos de Proteínas Captadores de Luz/metabolismo , Espectrometria de Fluorescência
14.
Biochem J ; 440(1): 51-61, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21793805

RESUMO

The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Detailed analysis of their absorption spectra reveals that there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucAB(a) and PucAB(b) apoproteins. The LL complexes contain PucAB(a), PucAB(d) and PucB(b)-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra. Crystallographic studies and molecular sieve chromatography suggest that both the HL and the LL complexes are nonameric. Furthermore, the electron-density maps do not support the existence of an additional Bchl (bacteriochlorophyll) molecule; rather the density is attributed to the N-termini of the α-polypeptide.


Assuntos
Complexos de Proteínas Captadores de Luz/biossíntese , Rodopseudomonas/crescimento & desenvolvimento , Bacterioclorofilas/química , Cristalografia por Raios X , Luz , Rodopseudomonas/química
15.
Langmuir ; 27(8): 4816-28, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21405043

RESUMO

Chlorosomes, the peripheral light-harvesting antenna complex from green photosynthetic bacteria, are the largest and one of the most efficient light-harvesting antenna complexes found in nature. In contrast to other light-harvesting antennas, chlorosomes are constructed from more than 150,000 self-assembled bacteriochlorophylls (BChls) and contain relatively few proteins that play secondary roles. These unique properties have led to chlorosomes as an attractive candidate for developing biohybrid solar cell devices. In this article, we investigate the temperature and ionic strength effects on the viability of chlorosomes from the photosynthetic green bacterium Chloroflexus aurantiacus using small-angle neutron scattering and dynamic light scattering. Our studies indicate that chlorosomes remain intact up to 75 °C and that salt induces the formation of large aggregates of chlorosomes. No internal structural changes are observed for the aggregates. The salt-induced aggregation, which is a reversible process, is more efficient with divalent metal ions than with monovalent metal ions. Moreover, with treatment at 98 °C for 2 min, the bulk of the chlorosome pigments are undamaged, while the baseplate is destroyed. Chlorosomes without the baseplate remain rodlike in shape and are 30-40% smaller than with the baseplate attached. Further, chlorosomes are stable from pH 5.5 to 11.0. Together, this is the first time such a range of characterization tools have been used for chlorosomes, and this has enabled elucidation of properties that are not only important to understanding their functionality but also may be useful in biohybrid devices for effective light harvesting.


Assuntos
Complexos de Proteínas Captadores de Luz , Concentração Osmolar , Temperatura , Chloroflexus/química , Fontes Geradoras de Energia , Multimerização Proteica
16.
Biochemistry ; 49(35): 7524-31, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20672862

RESUMO

Photosynthetic organisms have evolved diverse light-harvesting complexes to harness light of various qualities and intensities. Photosynthetic bacteria can have (bacterio)chlorophyll Q(y) antenna absorption bands ranging from approximately 650 to approximately 1100 nm. This broad range of wavelengths has allowed many organisms to thrive in unique light environments. Roseiflexus castenholzii is a niche-adapted, filamentous anoxygenic phototroph (FAP) that lacks chlorosomes, the dominant antenna found in most green bacteria, and here we describe the purification of a full complement of photosynthetic complexes: the light-harvesting (LH) antenna, reaction center (RC), and core complex (RC-LH). By high-performance liquid chromatography separation of bacteriochlorophyll and bacteriopheophytin pigments extracted from the core complex and the RC, the number of subunits that comprise the antenna was determined to be 15 +/- 1. Resonance Raman spectroscopy of the carbonyl stretching region displayed modes indicating that 3C-acetyl groups of BChl a are all involved in molecular interactions probably similar to those found in LH1 complexes from purple photosynthetic bacteria. Finally, two-dimensional projections of negatively stained core complexes and the LH antenna revealed a closed, slightly elliptical LH ring with an average diameter of 130 +/- 10 A surrounding a single RC that lacks an H-subunit but is associated with a tetraheme c-type cytochrome.


Assuntos
Proteínas de Bactérias/química , Chloroflexi/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Proteínas de Bactérias/metabolismo , Chloroflexi/química , Ligação de Hidrogênio , Complexos de Proteínas Captadores de Luz/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Análise Espectral Raman
17.
Biochim Biophys Acta ; 1787(8): 1050-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19272352

RESUMO

The light-harvesting-reaction center (LHRC) complex from the chlorosome-lacking filamentous anoxygenic phototroph (FAP), Roseiflexus castenholzii (R. castenholzii) was purified and characterized for overall pigment organization. The LHRC is a single complex that is comprised of light harvesting (LH) and reaction center (RC) polypeptides as well as an attached c-type cytochrome. The dominant carotenoid found in the LHRC is keto-gamma-carotene, which transfers excitation to the long wavelength antenna band with 35% efficiency. Linear dichroism and fluorescence polarization measurements indicate that the long wavelength antenna pigments absorbing around 880 nm are perpendicular to the membrane plane, with the corresponding Q(y) transition dipoles in the plane of the membrane. The antenna pigments absorbing around 800 nm, as well as the bound carotenoid, are oriented at a large angle with respect to the membrane. The antenna pigments spectroscopically resemble the well-studied LH2 complex from purple bacteria, however the close association with the RC makes the light harvesting component of this complex functionally more like LH1.


Assuntos
Proteínas de Bactérias/química , Chloroflexi/química , Complexos de Proteínas Captadores de Luz/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Chloroflexi/metabolismo , Dicroísmo Circular , Complexos de Proteínas Captadores de Luz/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Espectrometria de Fluorescência
18.
Photosynth Res ; 104(2-3): 283-92, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20461555

RESUMO

In what appears to be a common theme for all phototrophs, heliobacteria exhibit complex modulations of fluorescence yield when illuminated with actinic light and probed on a time scale of micros to minutes. The fluorescence yield from cells of Heliobacterium modesticaldum remained nearly constant for the first 10-100 ms of illumination and then rose to a maximum level with one or two inflections over the course of many seconds. Fluorescence then declined to a steady-state value within about one minute. In this analysis, the origins of the fluorescence induction in whole cells of heliobacteria are investigated by treating cells with a combination of electron accepters, donors, and inhibitors of the photosynthetic electron transport, as well as varying the temperature. We conclude that fluorescence modulation in H. modesticaldum results from acceptor-side limitation in the reaction center (RC), possibly due to charge recombination between P(800) (+) and A(0) (-).


Assuntos
Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/metabolismo , Elétrons , Fluorescência , Bactérias Gram-Positivas/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Modelos Biológicos , Fixação de Nitrogênio/efeitos dos fármacos , Oxidantes/farmacologia , Polienos/farmacologia , Substâncias Redutoras/farmacologia , Temperatura
19.
Biophys J ; 97(11): 3019-28, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19948132

RESUMO

Energy transfer processes in photosynthetic light harvesting 2 (LH2) complexes isolated from purple bacterium Rhodopseudomonas palustris grown at different light intensities were studied by ground state and transient absorption spectroscopy. The decomposition of ground state absorption spectra shows contributions from B800 and B850 bacteriochlorophyll (BChl) a rings, the latter component splitting into a low energy and a high energy band in samples grown under low light (LL) conditions. A spectral analysis reveals strong inhomogeneity of the B850 excitons in the LL samples that is well reproduced by an exponential-type distribution. Transient spectra show a bleach of both the low energy and high energy bands, together with the respective blue-shifted exciton-to-biexciton transitions. The different spectral evolutions were analyzed by a global fitting procedure. Energy transfer from B800 to B850 occurs in a mono-exponential process and the rate of this process is only slightly reduced in LL compared to high light samples. In LL samples, spectral relaxation of the B850 exciton follows strongly nonexponential kinetics that can be described by a reduction of the bleach of the high energy excitonic component and a red-shift of the low energetic one. We explain these spectral changes by picosecond exciton relaxation caused by a small coupling parameter of the excitonic splitting of the BChl a molecules to the surrounding bath. The splitting of exciton energy into two excitonic bands in LL complex is most probably caused by heterogenous composition of LH2 apoproteins that gives some of the BChls in the B850 ring B820-like site energies, and causes a disorder in LH2 structure.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Transferência de Energia/efeitos da radiação , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Rodopseudomonas/enzimologia , Absorção , Bacterioclorofilas/metabolismo , Espectrofotometria Infravermelho , Fatores de Tempo
20.
J Bacteriol ; 191(21): 6701-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19717605

RESUMO

The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae.


Assuntos
Chloroflexus/metabolismo , Complexos de Proteínas Captadores de Luz/fisiologia , Organelas/fisiologia , Cromatóforos Bacterianos , Bacterioclorofilas/fisiologia , Membrana Celular , Membranas Intracelulares , Organelas/ultraestrutura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA