Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G687-G696, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591144

RESUMO

Tryptophan is an essential amino acid transformed by host and gut microbial enzymes into metabolites that regulate mucosal homeostasis through aryl hydrocarbon receptor (AhR) activation. Alteration of tryptophan metabolism has been associated with chronic inflammation; however, whether tryptophan supplementation affects the metabolite repertoire and AhR activation under physiological conditions in humans is unknown. We performed a randomized, double blind, placebo-controlled, crossover study in 20 healthy volunteers. Subjects on a low tryptophan background diet were randomly assigned to a 3-wk l-tryptophan supplementation (3 g/day) or placebo, and after a 2-wk washout switched to opposite interventions. We assessed gastrointestinal and psychological symptoms by validated questionnaires, AhR activation by cell reporter assay, tryptophan metabolites by liquid chromatography and high-resolution mass spectrometry, cytokine production in isolated monocytes by ELISA, and microbiota profile by 16S rRNA Illumina technique. Oral tryptophan supplementation was well tolerated, with no changes in gastrointestinal or psychological scores. Compared with placebo, tryptophan increased AhR activation capacity by duodenal contents, but not by feces. This was paralleled by higher urinary and plasma kynurenine metabolites and indoles. Tryptophan had a modest impact on fecal microbiome profiles and no significant effect on cytokine production. At the doses used in this study, oral tryptophan supplementation in humans induces microbial indole and host kynurenine metabolic pathways in the small intestine, known to be immunomodulatory. The results should prompt tryptophan intervention strategies in inflammatory conditions of the small intestine where the AhR pathway is impaired.NEW & NOTEWORTHY We demonstrate that in healthy subjects, orally administered tryptophan activates microbial indole and host kynurenine pathways in the small intestine, the primary metabolic site for dietary components, and the richest source of immune cells along the gut. This study provides novel insights in how to optimally activate immunomodulatory AhR pathways and indole metabolism in the small intestine, serving as basis for future therapeutic trials using l-tryptophan supplementation in chronic inflammatory conditions affecting the small intestine.


Assuntos
Estudos Cross-Over , Duodeno , Voluntários Saudáveis , Receptores de Hidrocarboneto Arílico , Triptofano , Humanos , Triptofano/metabolismo , Triptofano/administração & dosagem , Receptores de Hidrocarboneto Arílico/metabolismo , Masculino , Adulto , Feminino , Duodeno/metabolismo , Duodeno/efeitos dos fármacos , Método Duplo-Cego , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Adulto Jovem , Administração Oral , Cinurenina/metabolismo , Citocinas/metabolismo , Fezes/microbiologia , Fezes/química , Indóis/farmacologia , Indóis/administração & dosagem , Fatores de Transcrição Hélice-Alça-Hélice Básicos
2.
Clin Gastroenterol Hepatol ; 19(11): 2343-2352.e8, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827724

RESUMO

BACKGROUND & AIMS: Many patients with irritable bowel syndrome (IBS) perceive that their symptoms are triggered by wheat-containing foods. We assessed symptoms and gastrointestinal transit before and after a gluten-free diet (GFD) in unselected patients with IBS and investigated biomarkers associated with symptoms. METHODS: We performed a prospective study of 50 patients with IBS (ROME III, all subtypes), with and without serologic reactivity to gluten (antigliadin IgG and IgA), and 25 healthy subjects (controls) at a university hospital in Hamilton, Ontario, Canada, between 2012 and 2016. Gastrointestinal transit, gut symptoms, anxiety, depression, somatization, dietary habits, and microbiota composition were studied before and after 4 weeks of a GFD. HLA-DQ2/DQ8 status was determined. GFD compliance was assessed by a dietitian and by measuring gluten peptides in stool. RESULTS: There was no difference in symptoms among patients at baseline, but after the GFD, patients with antigliadin IgG and IgA reported less diarrhea than patients without these antibodies (P = .03). Compared with baseline, IBS symptoms improved in 18 of 24 patients (75%) with antigliadin IgG and IgA and in 8 of 21 patients (38%) without the antibodies. Although constipation, diarrhea, and abdominal pain were reduced in patients with antigliadin IgG and IgA, only pain decreased in patients without these antibodies. Gastrointestinal transit normalized in a higher proportion of patients with antigliadin IgG and IgA. Anxiety, depression, somatization, and well-being increased in both groups. The presence of antigliadin IgG was associated with overall reductions in symptoms (adjusted odds ratio compared with patients without this antibody, 128.9; 95% CI, 1.16-1427.8; P = .04). Symptoms were reduced even in patients with antigliadin IgG and IgA who reduced gluten intake but were not strictly compliant with the GFD. In controls, a GFD had no effect on gastrointestinal symptoms or gut function. CONCLUSIONS: Antigliadin IgG can be used as a biomarker to identify patients with IBS who might have reductions in symptoms, particularly diarrhea, on a GFD. Larger studies are needed to validate these findings. ClinicalTrials.gov: NCT03492333.


Assuntos
Doença Celíaca , Síndrome do Intestino Irritável , Diarreia , Dieta Livre de Glúten , Humanos , Imunoglobulina G , Estudos Prospectivos
3.
Dig Dis Sci ; 66(10): 3529-3541, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33462747

RESUMO

BACKGROUND: Chronic constipation can have one or more of many etiologies, and a diagnosis based on symptoms is not sufficient as a basis for treatment, in particular surgery. AIM: To investigate the cause of chronic constipation in a patient with complete absence of spontaneous bowel movements. METHODS: High-resolution colonic manometry was performed to assess motor functions of the colon, rectum, the sphincter of O'Beirne and the anal sphincters. RESULTS: Normal colonic motor patterns were observed, even at baseline, but a prominent high-pressure zone at the rectosigmoid junction, the sphincter of O'Beirne, was consistently present. In response to high-amplitude propagating pressure waves (HAPWs) that were not consciously perceived, the sphincter and the anal sphincters would not relax and paradoxically contract, identified as autonomous dyssynergia. Rectal bisacodyl evoked marked HAPW activity with complete relaxation of the sphincter of O'Beirne and the anal sphincters, indicating that all neural pathways to generate the coloanal reflex were intact but had low sensitivity to physiological stimuli. A retrograde propagating cyclic motor pattern initiated at the sphincter of O'Beirne, likely contributing to failure of content to move into the rectum. CONCLUSIONS: Chronic constipation without the presence of spontaneous bowel movements can be associated with normal colonic motor patterns but a highly exaggerated pressure at the rectosigmoid junction: the sphincter of O'Beirne, and failure of this sphincter and the anal sphincters to relax associated with propulsive motor patterns. The sphincter of O'Beirne can be an important part of the pathophysiology of chronic constipation.


Assuntos
Ataxia/patologia , Colo Sigmoide/patologia , Constipação Intestinal/patologia , Reto/patologia , Canal Anal , Colo Sigmoide/anatomia & histologia , Colo Sigmoide/inervação , Colo Sigmoide/fisiologia , Constipação Intestinal/tratamento farmacológico , Feminino , Motilidade Gastrointestinal , Humanos , Laxantes/uso terapêutico , Manometria , Pessoa de Meia-Idade , Reto/anatomia & histologia , Reto/inervação , Reto/fisiologia , Reflexo
4.
Gastroenterology ; 156(8): 2266-2280, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30802444

RESUMO

BACKGROUND & AIMS: Wheat-related disorders, a spectrum of conditions induced by the ingestion of gluten-containing cereals, have been increasing in prevalence. Patients with celiac disease have gluten-specific immune responses, but the contribution of non-gluten proteins to symptoms in patients with celiac disease or other wheat-related disorders is controversial. METHODS: C57BL/6 (control), Myd88-/-, Ticam1-/-, and Il15-/- mice were placed on diets that lacked wheat or gluten, with or without wheat amylase trypsin inhibitors (ATIs), for 1 week. Small intestine tissues were collected and intestinal intraepithelial lymphocytes (IELs) were measured; we also investigated gut permeability and intestinal transit. Control mice fed ATIs for 1 week were gavaged daily with Lactobacillus strains that had high or low ATI-degrading capacity. Nonobese diabetic/DQ8 mice were sensitized to gluten and fed an ATI diet, a gluten-containing diet or a diet with ATIs and gluten for 2 weeks. Mice were also treated with Lactobacillus strains that had high or low ATI-degrading capacity. Intestinal tissues were collected and IELs, gene expression, gut permeability and intestinal microbiota profiles were measured. RESULTS: In intestinal tissues from control mice, ATIs induced an innate immune response by activation of Toll-like receptor 4 signaling to MD2 and CD14, and caused barrier dysfunction in the absence of mucosal damage. Administration of ATIs to gluten-sensitized mice expressing HLA-DQ8 increased intestinal inflammation in response to gluten in the diet. We found ATIs to be degraded by Lactobacillus, which reduced the inflammatory effects of ATIs. CONCLUSIONS: ATIs mediate wheat-induced intestinal dysfunction in wild-type mice and exacerbate inflammation to gluten in susceptible mice. Microbiome-modulating strategies, such as administration of bacteria with ATI-degrading capacity, may be effective in patients with wheat-sensitive disorders.


Assuntos
Doença Celíaca/imunologia , Dieta Livre de Glúten/métodos , Gliadina/efeitos adversos , Lactobacillus/imunologia , Triticum/efeitos adversos , Amilases/antagonistas & inibidores , Animais , Doença Celíaca/dietoterapia , Doença Celíaca/fisiopatologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/imunologia , Gliadina/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Lactobacillus/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade , Triticum/imunologia , Inibidores da Tripsina/imunologia , Inibidores da Tripsina/farmacologia
5.
Gastroenterology ; 153(2): 448-459.e8, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28483500

RESUMO

BACKGROUND & AIMS: Probiotics can reduce symptoms of irritable bowel syndrome (IBS), but little is known about their effects on psychiatric comorbidities. We performed a prospective study to evaluate the effects of Bifidobacterium longum NCC3001 (BL) on anxiety and depression in patients with IBS. METHODS: We performed a randomized, double-blind, placebo-controlled study of 44 adults with IBS and diarrhea or a mixed-stool pattern (based on Rome III criteria) and mild to moderate anxiety and/or depression (based on the Hospital Anxiety and Depression scale) at McMaster University in Canada, from March 2011 to May 2014. At the screening visit, clinical history and symptoms were assessed and blood samples were collected. Patients were then randomly assigned to groups and given daily BL (n = 22) or placebo (n = 22) for 6 weeks. At weeks 0, 6, and 10, we determined patients' levels of anxiety and depression, IBS symptoms, quality of life, and somatization using validated questionnaires. At weeks 0 and 6, stool, urine and blood samples were collected, and functional magnetic resonance imaging (fMRI) test was performed. We assessed brain activation patterns, fecal microbiota, urine metabolome profiles, serum markers of inflammation, neurotransmitters, and neurotrophin levels. RESULTS: At week 6, 14 of 22 patients in the BL group had reduction in depression scores of 2 points or more on the Hospital Anxiety and Depression scale, vs 7 of 22 patients in the placebo group (P = .04). BL had no significant effect on anxiety or IBS symptoms. Patients in the BL group had a mean increase in quality of life score compared with the placebo group. The fMRI analysis showed that BL reduced responses to negative emotional stimuli in multiple brain areas, including amygdala and fronto-limbic regions, compared with placebo. The groups had similar fecal microbiota profiles, serum markers of inflammation, and levels of neurotrophins and neurotransmitters, but the BL group had reduced urine levels of methylamines and aromatic amino acids metabolites. At week 10, depression scores were reduced in patients given BL vs placebo. CONCLUSION: In a placebo-controlled trial, we found that the probiotic BL reduces depression but not anxiety scores and increases quality of life in patients with IBS. These improvements were associated with changes in brain activation patterns that indicate that this probiotic reduces limbic reactivity. ClinicalTrials.gov no. NCT01276626.


Assuntos
Bifidobacterium longum , Encéfalo/fisiopatologia , Depressão/terapia , Síndrome do Intestino Irritável/psicologia , Probióticos/administração & dosagem , Adulto , Ansiedade/fisiopatologia , Ansiedade/psicologia , Ansiedade/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/microbiologia , Canadá , Depressão/fisiopatologia , Depressão/psicologia , Diarreia/microbiologia , Diarreia/terapia , Método Duplo-Cego , Emoções , Fezes/microbiologia , Feminino , Humanos , Síndrome do Intestino Irritável/fisiopatologia , Síndrome do Intestino Irritável/terapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Qualidade de Vida , Inquéritos e Questionários , Resultado do Tratamento
6.
BMC Pregnancy Childbirth ; 18(1): 14, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310610

RESUMO

BACKGROUND: Probiotics are living microorganisms that, when administered in adequate amounts, confer a health benefit. It has been speculated that probiotics might help prevent preterm birth, but in two previous systematic reviews possible major increases in this risk have been suggested. Our objective was to perform a systematic review and meta-analysis of the risk of preterm birth and other adverse pregnancy outcomes in pregnant women taking probiotics, prebiotics or synbiotics. METHODS: We searched six electronic databases (MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, Web of Science's Core collection and BIOSIS Preview) up to September 2016 and contacted authors for additional data. We included randomized controlled trials in which women with a singleton pregnancy received a probiotic, prebiotic or synbiotic intervention. Two independent reviewers extracted data using a piloted form and assessed the risk of bias using the Cochrane risk of bias tool. We used random-effects meta-analyses to pool the results. RESULTS: We identified 2574 publications, screened 1449 non-duplicate titles and abstracts and read 160 full text articles. The 49 publications that met our inclusion criteria represented 27 studies. No study used synbiotics, one used prebiotics and the rest used probiotics. Being randomized to take probiotics during pregnancy neither increased nor decreased the risk of preterm birth < 34 weeks (RR 1.03, 95% CI 0.29-3.64, I2 0%, 1017 women in 5 studies), preterm birth < 37 weeks (RR 1.08, 95% CI 0.71-1.63, I2 0%, 2484 women in 11 studies), or most of our secondary outcomes, including gestational diabetes mellitus. CONCLUSIONS: We found no evidence that taking probiotics or prebiotics during pregnancy either increases or decreases the risk of preterm birth or other infant and maternal adverse pregnancy outcomes. TRIAL REGISTRATION: We prospectively published the protocol for this study in the PROSPERO database ( CRD42016048129 ).


Assuntos
Prebióticos , Resultado da Gravidez , Nascimento Prematuro/epidemiologia , Probióticos/uso terapêutico , Diabetes Gestacional/epidemiologia , Feminino , Humanos , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Curr Opin Gastroenterol ; 32(1): 1-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26628101

RESUMO

PURPOSE OF REVIEW: The study reviews recent publications that build on previous studies showing that acute enteric infection can produce persistent dysfunction in the lower gut (postinfectious irritable bowel syndrome) and proximal gut (postinfectious functional dyspepsia). The review addresses risk factors, the pathophysiological basis of persistent gut dysfunction, and the factors that initiate and maintain it. RECENT FINDINGS: Recent work has identified several loci of host genetic predisposition to these syndromes that focus attention on host immune responses that may lead to gut dysfunction, including changes in intestinal barrier function and cytokine responses to the initial infection. Human and animal studies identify changes in the serotonergic and cannabinoid pathways regulating visceral pain responses and gut motility. Recent work has also focused attention on the putative role of the intestinal microbiota or dysbiosis in maintaining gut dysfunction and this is reviewed in depth. SUMMARY: The development of long-term consequences following an acute episode of gastroenteritis reflects a convergence of host factors that include genetic predisposition and psychological factors, as well as the development of intestinal dysbiosis. It is anticipated that future research will generate biomarkers of susceptibility as well as novel microbiota-directed preventive and therapeutic strategies.


Assuntos
Diarreia/etiologia , Disbiose/etiologia , Gastroenterite/complicações , Trato Gastrointestinal/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Diarreia/imunologia , Diarreia/microbiologia , Disbiose/imunologia , Disbiose/fisiopatologia , Gastroenterite/imunologia , Gastroenterite/fisiopatologia , Motilidade Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Predisposição Genética para Doença , Humanos , Imunidade nas Mucosas , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/microbiologia , Prognóstico , Fatores de Risco
8.
Am J Gastroenterol ; 110(7): 1038-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25964226

RESUMO

OBJECTIVES: Anxiety and depression occur frequently in patients with functional gastrointestinal disorders (FGIDs), but their precise prevalence is unknown. We addressed this issue in a large cohort of adult patients and determined the underlying factors. METHODS: In total, 4,217 new outpatients attending 2 hospitals in Hamilton, Ontario, Canada completed questionnaires evaluating FGIDs and anxiety and depression (Hospital Anxiety and Depression scale). Chart review was performed in a random sample of 2,400 patients. RESULTS: Seventy-six percent of patients fulfilled Rome III criteria for FGIDs, but only 57% were diagnosed with FGIDs after excluding organic diseases, and the latter group was considered for the analysis. Compared with patients not meeting the criteria, prevalence of anxiety (odds ratio (OR) 2.66, 95% confidence interval (CI): 1.62-4.37) or depression (OR 2.04, 95% CI: 1.03-4.02) was increased in patients with FGIDs. The risk was comparable to patients with organic disease (anxiety: OR 2.12, 95% CI: 1.24-3.61; depression: OR 2.48, 95% CI: 1.21-5.09). The lowest prevalence was observed in asymptomatic patients (OR 1.37; 95% CI 0.58-3.23 and 0.51; 95% CI 0.10-2.48; for both conditions, respectively). The prevalence of anxiety and depression increased in a stepwise manner with the number of co-existing FGIDs and frequency and/or severity of gastrointestinal (GI) symptoms. Psychiatric comorbidity was more common in females with FGIDs compared with males (anxiety OR 1.73; 95% CI 1.35-2.28; depression OR 1.52; 95% CI 1.04-2.21). Anxiety and depression were formally diagnosed by the consulting physician in only 22% and 9% of patients, respectively. CONCLUSIONS: Psychiatric comorbidity is common in patients referred to a secondary care center but is often unrecognized. The prevalence of both anxiety and depression is influenced by gender, presence of organic diseases, and FGIDs, and it increases with the number of coexistent FGIDs and frequency and severity of GI symptoms.


Assuntos
Ansiedade/epidemiologia , Ansiedade/etiologia , Depressão/epidemiologia , Depressão/etiologia , Gastroenteropatias/diagnóstico , Gastroenteropatias/psicologia , Adolescente , Adulto , Idoso , Comorbidade , Estudos Transversais , Dispepsia/psicologia , Feminino , Gastroenteropatias/epidemiologia , Azia/psicologia , Humanos , Síndrome do Intestino Irritável/psicologia , Masculino , Prontuários Médicos , Pessoa de Meia-Idade , Razão de Chances , Ontário/epidemiologia , Prevalência , Estudos Retrospectivos , Risco , Índice de Gravidade de Doença , Distribuição por Sexo , Inquéritos e Questionários , Adulto Jovem
9.
J Physiol ; 592(14): 2989-97, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24756641

RESUMO

The gut-brain axis is the bidirectional communication between the gut and the brain, which occurs through multiple pathways that include hormonal, neural and immune mediators. The signals along this axis can originate in the gut, the brain or both, with the objective of maintaining normal gut function and appropriate behaviour. In recent years, the study of gut microbiota has become one of the most important areas in biomedical research. Attention has focused on the role of gut microbiota in determining normal gut physiology and immunity and, more recently, on its role as modulator of host behaviour ('microbiota-gut-brain axis'). We therefore review the literature on the role of gut microbiota in gut homeostasis and link it with mechanisms that could influence behaviour. We discuss the association of dysbiosis with disease, with particular focus on functional bowel disorders and their relationship to psychological stress. This is of particular interest because exposure to stressors has long been known to increase susceptibility to and severity of gastrointestinal diseases.


Assuntos
Encéfalo/fisiologia , Gastroenteropatias , Trato Gastrointestinal , Microbiota , Estresse Psicológico , Animais , Gastroenteropatias/microbiologia , Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Humanos , Estresse Psicológico/microbiologia , Estresse Psicológico/fisiopatologia
10.
Adv Exp Med Biol ; 817: 279-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24997039

RESUMO

Animal studies have demonstrated that the early phase of enteric infection is accompanied by anxiety-like behavior, which is mediated through vagal ascending pathways. Chronic infection alters gut function, including motility and visceral sensitivity, as well as feeding patterns, anxiety and depression-like behavior. These effects are likely immune-mediated, and involve changes in pro-inflammatory cytokines and altered metabolism of kynurenine/tryptophan pathways. Clinical studies have shown that chronic gastrointestinal infections lead to malnutrition and stunting, resulting in impaired cognitive function. Accumulating evidence suggests that in addition to pathogens, the commensal gastrointestinal microbiota also influences gut function and host's behavior. Both animal and clinical studies have demonstrated changes in behavior and brain chemistry after induction of intestinal dysbiosis by administration of antibiotics. This concept of microbiota-gut-brain interactions opens a new field of research aimed at developing microbial-directed therapies to treat a broad spectrum of human conditions, including chronic gastrointestinal and psychiatric disorders.


Assuntos
Antibacterianos/farmacologia , Encéfalo/fisiologia , Trato Gastrointestinal/microbiologia , Infecções/psicologia , Inflamação/psicologia , Microbiota/fisiologia , Animais , Encéfalo/microbiologia , Cognição , Humanos , Inflamação/microbiologia
11.
Dig Liver Dis ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653643

RESUMO

Up to 25% of patients recovering from antibiotic-treated Clostridioides difficile infection (CDI) develop functional symptoms reminiscent of Post-Infectious Irritable Bowel Syndrome (PI-IBS). For patients with persistent symptoms following infection, a clinical dilemma arises as to whether to provide additional antibiotic treatment or to adopt a conservative symptom-based approach. Here, we review the literature on CDI-related PI-IBS and compare the findings with PI-IBS. We review proposed mechanisms, including the role of C. difficile toxins and the microbiota, and discuss implications for therapy. We suggest that gut dysfunction post-CDI may be initiated by toxin-induced damage to enteroglial cells and that a dysbiotic gut microbitota maintains the clinical phenotype over time, prompting consideration of microbiota-directed therapies. While Fecal Microbial Transplant (FMT) is currently reserved for recurrent CDI (rCDI), we propose that microbiota-directed therapies may have a role in primary CDI in order to avoid or mitigate futher antibiotic treatment that further disrupts the microbiota and thus prevent PI-IBS. We discuss novel microbial transfer therapies and as they emerge, we recommend clinical trials to determine whether microbial transfer therapy of the primary infection prevents both rCDI and CDI-related PI- IBS.

12.
Cell Mol Gastroenterol Hepatol ; 17(3): 383-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38061549

RESUMO

BACKGROUND & AIMS: Although chronic diarrhea and constipation are common, the treatment is symptomatic because their pathophysiology is poorly understood. Accumulating evidence suggests that the microbiota modulates gut function, but the underlying mechanisms are unknown. We therefore investigated the pathways by which microbiota modulates gastrointestinal motility in different sections of the alimentary tract. METHODS: Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene expression, and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic, and specific pathogen-free conditions. Effects of transient colonization and antimicrobials as well as immune cell blockade were investigated. VIP levels were assessed in human full-thickness biopsies by Western blot. RESULTS: Germ-free mice had similar gastric emptying but slower intestinal transit compared with specific pathogen-free mice or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter having stronger effects. Although muscle contractility was unaffected, its neural control was modulated by microbiota by up-regulating jejunal VIP, which co-localized with and controlled cholinergic nerve function. This process was responsive to changes in the microbial composition and load and mediated through toll-like receptor signaling, with enteric glia cells playing a key role. Jejunal VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control subjects. CONCLUSIONS: Microbial control of gastrointestinal motility is both region- and bacteria-specific; it reacts to environmental changes and is mediated by innate immunity-neural system interactions. By regulating cholinergic nerves, small intestinal VIP plays a key role in this process, thus providing a new therapeutic target for patients with motility disorders.


Assuntos
Motilidade Gastrointestinal , Peptídeo Intestinal Vasoativo , Humanos , Camundongos , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Motilidade Gastrointestinal/fisiologia , Neuroglia/metabolismo , Colinérgicos
13.
Gut Microbes ; 15(1): 2188874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36939195

RESUMO

Abdominal pain is common in patients with gastrointestinal disorders, but its pathophysiology is unclear, in part due to poor understanding of basic mechanisms underlying visceral sensitivity. Accumulating evidence suggests that gut microbiota is an important determinant of visceral sensitivity. Clinical and basic research studies also show that sex plays a role in pain perception, although the precise pathways are not elucidated. We investigated pain responses in germ-free and conventionally raised mice of both sexes, and assessed visceral sensitivity to colorectal distension, neuronal excitability of dorsal root ganglia (DRG) neurons and the production of substance P and calcitonin gene-related peptide (CGRP) in response to capsaicin or a mixture of G-protein coupled receptor (GPCR) agonists. Germ-free mice displayed greater in vivo responses to colonic distention than conventional mice, with no differences between males and females. Pretreatment with intracolonic capsaicin or GPCR agonists increased responses in conventional, but not in germ-free mice. In DRG neurons, gut microbiota and sex had no effect on neuronal activation by capsaicin or GPCR agonists. While stimulated production of substance P by DRG neurons was similar in germ-free and conventional mice, with no additional effect of sex, the CGRP production was higher in germ-free mice, mainly in females. Absence of gut microbiota increases visceral sensitivity to colorectal distention in both male and female mice. This is, at least in part, due to increased production of CGRP by DRG neurons, which is mainly evident in female mice. However, central mechanisms are also likely involved in this process.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Animais , Feminino , Masculino , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/farmacologia , Substância P/análise , Substância P/metabolismo
14.
Gastroenterology ; 141(4): 1314-22, 1322.e1-5, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21745447

RESUMO

BACKGROUND & AIMS: Proton pump inhibitors (PPIs) and nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used classes of drugs, with the former frequently coprescribed to reduce gastroduodenal injury caused by the latter. However, suppression of gastric acid secretion by PPIs is unlikely to provide any protection against the damage caused by NSAIDs in the more distal small intestine. METHODS: Rats were treated with antisecretory doses of omeprazole or lanzoprazole for 9 days, with concomitant treatment with anti-inflammatory doses of naproxen or celecoxib on the final 4 days. Small intestinal damage was blindly scored, and changes in hematocrit were measured. Changes in small intestinal microflora were evaluated by denaturing gradient gel electrophoresis and reverse-transcription polymerase chain reaction. RESULTS: Both PPIs significantly exacerbated naproxen- and celecoxib-induced intestinal ulceration and bleeding in the rat. Omeprazole treatment did not result in mucosal injury or inflammation; however, there were marked shifts in numbers and types of enteric bacteria, including a significant reduction (∼80%) of jejunal Actinobacteria and Bifidobacteria spp. Restoration of small intestinal Actinobacteria numbers through administration of selected (Bifidobacteria enriched) commensal bacteria during treatment with omeprazole and naproxen prevented intestinal ulceration/bleeding. Colonization of germ-free mice with jejunal bacteria from PPI-treated rats increased the severity of NSAID-induced intestinal injury, as compared with mice colonized with bacteria from vehicle-treated rats. CONCLUSIONS: PPIs exacerbate NSAID-induced intestinal damage at least in part because of significant shifts in enteric microbial populations. Prevention or reversal of this dysbiosis may be a viable option for reducing the incidence and severity of NSAID enteropathy.


Assuntos
Actinobacteria/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/toxicidade , Bifidobacterium/efeitos dos fármacos , Hemorragia Gastrointestinal/induzido quimicamente , Jejuno/efeitos dos fármacos , Úlcera Péptica/induzido quimicamente , Inibidores da Bomba de Prótons/toxicidade , 2-Piridinilmetilsulfinilbenzimidazóis/toxicidade , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Bifidobacterium/genética , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Celecoxib , Colo/efeitos dos fármacos , Colo/microbiologia , Eletroforese em Gel de Gradiente Desnaturante , Modelos Animais de Doenças , Interações Medicamentosas , Hemorragia Gastrointestinal/microbiologia , Hemorragia Gastrointestinal/patologia , Hemorragia Gastrointestinal/prevenção & controle , Hematócrito , Jejuno/microbiologia , Jejuno/patologia , Lansoprazol , Masculino , Naproxeno/toxicidade , Omeprazol/toxicidade , Úlcera Péptica/microbiologia , Úlcera Péptica/patologia , Úlcera Péptica/prevenção & controle , Probióticos/farmacologia , Pirazóis/toxicidade , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/toxicidade , Fatores de Tempo
15.
Gastroenterology ; 141(2): 599-609, 609.e1-3, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21683077

RESUMO

BACKGROUND & AIMS: Alterations in the microbial composition of the gastrointestinal tract (dysbiosis) are believed to contribute to inflammatory and functional bowel disorders and psychiatric comorbidities. We examined whether the intestinal microbiota affects behavior and brain biochemistry in mice. METHODS: Specific pathogen-free (SPF) BALB/c mice, with or without subdiaphragmatic vagotomy or chemical sympathectomy, or germ-free BALB/c mice received a mixture of nonabsorbable antimicrobials (neomycin, bacitracin, and pimaricin) in their drinking water for 7 days. Germ-free BALB/c and NIH Swiss mice were colonized with microbiota from SPF NIH Swiss or BALB/c mice. Behavior was evaluated using step-down and light preference tests. Gastrointestinal microbiota were assessed using denaturing gradient gel electrophoresis and sequencing. Gut samples were analyzed by histologic, myeloperoxidase, and cytokine analyses; levels of serotonin, noradrenaline, dopamine, and brain-derived neurotropic factor (BDNF) were assessed by enzyme-linked immunosorbent assay. RESULTS: Administration of oral antimicrobials to SPF mice transiently altered the composition of the microbiota and increased exploratory behavior and hippocampal expression of BDNF. These changes were independent of inflammatory activity, changes in levels of gastrointestinal neurotransmitters, and vagal or sympathetic integrity. Intraperitoneal administration of antimicrobials to SPF mice or oral administration to germ-free mice did not affect behavior. Colonization of germ-free BALB/c mice with microbiota from NIH Swiss mice increased exploratory behavior and hippocampal levels of BDNF, whereas colonization of germ-free NIH Swiss mice with BALB/c microbiota reduced exploratory behavior. CONCLUSIONS: The intestinal microbiota influences brain chemistry and behavior independently of the autonomic nervous system, gastrointestinal-specific neurotransmitters, or inflammation. Intestinal dysbiosis might contribute to psychiatric disorders in patients with bowel disorders.


Assuntos
Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colo/microbiologia , Vida Livre de Germes , Hipocampo/metabolismo , Intestino Delgado/microbiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Análise de Variância , Animais , Antibacterianos/farmacologia , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Citocinas/metabolismo , Hipocampo/fisiologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo , Simpatectomia , Vagotomia
16.
Front Cell Infect Microbiol ; 12: 773413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223537

RESUMO

Many physiological functions exhibit circadian rhythms: oscillations in biological processes that occur in a 24-hour period. These daily rhythms are maintained through a highly conserved molecular pacemaker known as the circadian clock. Circadian disruption has been proposed to cause increased risk of Inflammatory Bowel Disease (IBD) but the underlying mechanisms remain unclear. Patients with IBD experience chronic inflammation and impaired regeneration of intestinal epithelial cells. Previous animal-based studies have revealed that colitis models of IBD are more severe in mice without a circadian clock but the timing of colitis, and whether its inflammatory and regenerative processes have daily rhythms, remains poorly characterized. We tested circadian disruption using Bmal1-/- mutant mice that have a non-functional circadian clock and thus no circadian rhythms. Dextran Sulfate Sodium (DSS) was used to induce colitis. The disease activity of colitis was found to exhibit time-dependent variation in Bmal1+/+ control mice but is constant and elevated in Bmal1-/- mutants, who exhibit poor recovery. Histological analyses indicate worsened colitis severity in Bmal1-/- mutant colon, and colon infiltration of immune system cells shows a daily rhythm that is lost in the Bmal1-/- mutant. Similarly, epithelial proliferation in the colon has a daily rhythm in Bmal1+/+ controls but not in Bmal1-/- mutants. Our results support a critical role of a functional circadian clock in the colon which drives 24-hour rhythms in inflammation and healing, and whose disruption impairs colitis recovery. This indicates that weakening circadian rhythms not only worsens colitis, but delays healing and should be taken into account in the management of IBD. Recognition of this is important in the management of IBD patients required to do shift work.


Assuntos
Fatores de Transcrição ARNTL , Relógios Circadianos , Colite , Fatores de Transcrição ARNTL/genética , Animais , Ritmo Circadiano , Colite/induzido quimicamente , Colite/patologia , Humanos , Doenças Inflamatórias Intestinais , Camundongos
17.
Gut Microbes ; 14(1): 2105095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905313

RESUMO

Both mast cells and microbiota play important roles in the pathogenesis of Irritable Bowel Syndrome (IBS), however the precise mechanisms are unknown. Using microbiota-humanized IBS mouse model, we show that colonic mast cells and mast cells co-localized with neurons were higher in mice colonized with IBS microbiota compared with those with healthy control (HC) microbiota. In situ hybridization showed presence of IBS, but not control microbiota, in the lamina propria and RNAscope demonstrated frequent co-localization of IBS bacteria and mast cells. TLR4 and H4 receptor expression was higher in mice with IBS microbiota, and in peritoneal-derived and bone marrow-derived mast cells (BMMCs) stimulated with IBS bacterial supernatant, which also increased BMMCs degranulation, chemotaxis, adherence and histamine release. While both TLR4 and H4 receptor inhibitors prevented BMMCs degranulation, only the latter attenuated their chemotaxis. We provide novel insights into the mechanisms, which contribute to gut dysfunction and visceral hypersensitivity in IBS.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Animais , Bactérias , Modelos Animais de Doenças , Mucosa Intestinal/microbiologia , Síndrome do Intestino Irritável/microbiologia , Mastócitos , Camundongos , Receptor 4 Toll-Like/metabolismo
18.
Sci Transl Med ; 14(655): eabj1895, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895832

RESUMO

The gut microbiota has been implicated in chronic pain disorders, including irritable bowel syndrome (IBS), yet specific pathophysiological mechanisms remain unclear. We showed that decreasing intake of fermentable carbohydrates improved abdominal pain in patients with IBS, and this was accompanied by changes in the gut microbiota and decreased urinary histamine concentrations. Here, we used germ-free mice colonized with fecal microbiota from patients with IBS to investigate the role of gut bacteria and the neuroactive mediator histamine in visceral hypersensitivity. Germ-free mice colonized with the fecal microbiota of patients with IBS who had high but not low urinary histamine developed visceral hyperalgesia and mast cell activation. When these mice were fed a diet with reduced fermentable carbohydrates, the animals showed a decrease in visceral hypersensitivity and mast cell accumulation in the colon. We observed that the fecal microbiota from patients with IBS with high but not low urinary histamine produced large amounts of histamine in vitro. We identified Klebsiella aerogenes, carrying a histidine decarboxylase gene variant, as a major producer of this histamine. This bacterial strain was highly abundant in the fecal microbiota of three independent cohorts of patients with IBS compared with healthy individuals. Pharmacological blockade of the histamine 4 receptor in vivo inhibited visceral hypersensitivity and decreased mast cell accumulation in the colon of germ-free mice colonized with the high histamine-producing IBS fecal microbiota. These results suggest that therapeutic strategies directed against bacterial histamine could help treat visceral hyperalgesia in a subset of patients with IBS with chronic abdominal pain.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Dor Abdominal , Animais , Carboidratos/uso terapêutico , Histamina/uso terapêutico , Hiperalgesia , Síndrome do Intestino Irritável/microbiologia , Camundongos
19.
Mol Metab ; 61: 101498, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452877

RESUMO

BACKGROUND/PURPOSE: Type 2 diabetes and obesity increase the risk of developing colorectal cancer. Metformin may reduce colorectal cancer but the mechanisms mediating this effect remain unclear. In mice and humans, a high-fat diet (HFD), obesity and metformin are known to alter the gut microbiome but whether this is important for influencing tumor growth is not known. METHODS: Mice with syngeneic MC38 colon adenocarcinomas were treated with metformin or feces obtained from control or metformin treated mice. RESULTS: We find that compared to chow-fed controls, tumor growth is increased when mice are fed a HFD and that this acceleration of tumor growth can be partially recapitulated through transfer of the fecal microbiome or in vitro treatment of cells with fecal filtrates from HFD-fed animals. Treatment of HFD-fed mice with orally ingested, but not intraperitoneally injected, metformin suppresses tumor growth and increases the expression of short-chain fatty acid (SCFA)-producing microbes Alistipes, Lachnospiraceae and Ruminococcaceae. The transfer of the gut microbiome from mice treated orally with metformin to drug naïve, conventionalized HFD-fed mice increases circulating propionate and butyrate, reduces tumor proliferation, and suppresses the expression of sterol response element binding protein (SREBP) gene targets in the tumor. CONCLUSION: These data indicate that in obese mice fed a HFD, metformin reduces tumor burden through changes in the gut microbiome.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Animais , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico
20.
J Clin Invest ; 118(6): 2209-18, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18451995

RESUMO

Clinical and experimental evidence indicates that intestinal inflammatory conditions can be exacerbated by behavioral conditions such as depression. The recent demonstration of a tonic counterinflammatory influence mediated by the vagus nerve in experimental colitis provides a potential link between behavior and gut inflammation. Here we show that experimental conditions that induced depressive-like behaviors in mice increased susceptibility to intestinal inflammation by interfering with the tonic vagal inhibition of proinflammatory macrophages and that tricyclic antidepressants restored vagal function and reduced intestinal inflammation. These results show that reserpine-induced monoamine depletion and maternal separation, 2 models for depression, produced a vulnerability to colitis by a mechanism involving parasympathetic transmission and the presence of gut macrophages. The tricyclic antidepressant desmethylimipramine protected against this vulnerability by a vagal-dependent mechanism. Together these results illustrate the critical role of the vagus in both the vulnerability to inflammation induced by depressive-like conditions and the protection afforded by tricyclic antidepressants and rationalize a clinical evaluation of both parasympathomimetics and tricyclic antidepressants in treatment of inflammatory bowel disease.


Assuntos
Transtorno Depressivo/genética , Predisposição Genética para Doença , Doenças Inflamatórias Intestinais/genética , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Colite/patologia , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Feminino , Doenças Inflamatórias Intestinais/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso Parassimpático/metabolismo , Reserpina/farmacologia , Serotonina/metabolismo , Serotoninérgicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA