Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(1): 298-308, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525570

RESUMO

Molecular inks based on dimethyl sulfoxide, thiourea (TU), and metal salts have been used to form high optoelectronic quality semiconductors and have led to high power conversion efficiencies for solution-processed photovoltaic devices for Cu2ZnSn(S,Se)4 (CZTS), Cu2Zn(Ge,Sn)(S,Se)4 (CZGTS), CuIn(S,Se)2 (CIS), and Cu(In,Ga)(S,Se)2 (CIGS). However, several metal species of interest, including Ag(I), In(III), Ge(II), and Ge(IV), either have low solubility (requiring dilute inks) or lead to precipitation or gelation. Here, we demonstrate that the combination of N,N-dimethylformamide (DMF) and TU has the remarkable ability to form intermediate-stability acid-base complexes with a wide number of metal chloride Lewis acids (CuCl, AgCl, ZnCl2, InCl3, GaCl3, SnCl4, GeCl4, and SeCl4), to give high-concentration stable molecular inks. Using calorimetry, Raman spectroscopy, and solubility experiments, we reveal the important role of chloride transfer and TU to stabilize metal cations in DMF. Methylation of TU is used to vary the strength of the Lewis basicity and demonstrate that the strength of the TU-metal chloride complex formed after DMF evaporation is critical to prevent volatilization of metal containing species. Further, we formulated a sulfur-free molecular ink which was used to deposit crystalline CuInSe2 without selenization that sustains high quasi-Fermi level splitting under constant illumination. Finally, we demonstrate the ability of the DMF-TU molecular ink chemistry to lead to high-photovoltaic power conversion efficiencies and high-open-circuit voltages for solution-processed CIS and CZGTS with power conversion efficiencies of 13.4% and 11.0% and Voc/ Voc,SQ of 67% and 63%, respectively.

2.
Chem Mater ; 23(8): 2107-2112, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21572556

RESUMO

The fabrication of nanostructured films possessing tricontinuous minimal surface mesophases with well-defined framework and pore connectivity remains a difficult task. As a new route to these structures, we introduce glycerol monooleate (GMO) as a template for evaporation-induced self-assembly. As deposited, a nanostructured double gyroid phase is formed, as indicated by analysis of grazing-incidence small-angle x-ray scattering data. Removal of GMO by UV/O(3) treatment or acid extraction induces a phase change to a nanoporous body-centered structure which we tentatively identify as based on the IW-P surface. To improve film quality, we add a co-surfactant to the GMO in a mass ratio of 1:10; when this co-surfactant is cetyltrimethylammonium bromide, we find an unusually large pore size (8-12 nm) in acid extracted films, while UV/O(3) treated films yield pores of only ca. 4 nm. Using this pore size dependence on film processing procedure, we create a simple method for patterning pore size in nanoporous films, demonstrating spatially-defined size-selective molecular adsorption.

3.
Langmuir ; 25(16): 9500-9, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19496546

RESUMO

The nanostructure of silica and hybrid thin film mesophases templated by phospholipids via an evaporation-induced self-assembly (EISA) process was investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Diacyl phosphatidylcholines with two tails of 6 or 8 carbons were found to template 2D hexagonal mesophases, with the removal of lipid from these lipid/silica films by thermal or UV/O3 processing resulting in a complete collapse of the pore volume. Monoacyl phosphatidylcholines with single tails of 10-14 carbons formed 3D micellular mesophases; the lipid was found to be extractable from these 3D materials, yielding a porous material. In contrast to pure lipid/silica thin film mesophases, films formed from the hybrid bridged silsesquioxane precursor bis(triethoxysilyl)ethane exhibited greater stability toward (both diacyl and monoacyl) lipid removal. Ellipsometric, FTIR, and NMR studies show that the presence of phospholipid suppresses siloxane network formation, while actually promoting condensation reactions in the hybrid material. 1D X-ray scattering and FTIR data were found to be consistent with strong interactions between lipid headgroups and the silica framework.


Assuntos
Lipídeos/química , Nanoestruturas/química , Dióxido de Silício/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fosfolipídeos/química , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA