Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Genet ; 39(1): 34-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055901

RESUMO

Chromoanagenesis is a single catastrophic event that involves, in most cases, localized chromosomal shattering and reorganization, resulting in a dramatically restructured chromosome. First discovered in cancer cells, it has since been observed in various other systems, including plants. In this review, we discuss the origin, characteristics, and potential mechanisms underlying chromoanagenesis in plants. We report that multiple processes, including mutagenesis and genetic engineering, can trigger chromoanagenesis via a variety of mechanisms such as micronucleation, breakage-fusion-bridge (BFB) cycles, or chain-like translocations. The resulting rearranged chromosomes can be preserved during subsequent plant growth, and sometimes inherited to the next generation. Because of their high tolerance to genome restructuring, plants offer a unique system for investigating the evolutionary consequences and potential practical applications of chromoanagenesis.


Assuntos
Cromossomos , Cromotripsia , Humanos , Genoma , Plantas/genética
2.
Chromosoma ; 132(2): 105-115, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36964786

RESUMO

Minichromosomes are small, sometimes circular, rearranged chromosomes consisting of one centromere and short chromosomal arms formed by treatments that break DNA, including plant transformation. Minichromosomes have the potential to serve as vectors to quickly move valuable genes across a wide range of germplasm, including into adapted crop varieties. To realize this potential, minichromosomes must be reliably generated, easily manipulated, and stably inherited. Here we show a reliable method for minichromosome formation in haploids resulting from CENH3-mediated genome elimination, a process that generates genome instability and karyotypic novelty specifically on one parental genome. First, we identified 2 out of 260 haploids, each containing a single-copy minichromosome originating from centromeric regions of chromosomes 1 and 3, respectively. The chromosome 1 minichromosome we characterized did not pair at meiosis but displayed consistent transmission over nine selfing generations. Next, we demonstrated that CENH3-based haploid induction can produce minichromosomes in a targeted manner. Haploid inducers carrying a selectable pericentromeric marker were used to isolate additional chromosome-specific minichromosomes, which occurred in 3 out of 163 haploids. Our findings document the formation of heritable, rearranged chromosomes, and we provide a method for convenient minichromosome production.


Assuntos
Arabidopsis , Haploidia , Arabidopsis/genética , Centrômero/genética , Plantas/genética , Genoma
3.
Plant Cell ; 33(4): 940-960, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793772

RESUMO

Gene copy number variation is frequent in plant genomes of various species, but the impact of such gene dosage variation on morphological traits is poorly understood. We used a large population of Populus carrying genomically characterized insertions and deletions across the genome to systematically assay the effect of gene dosage variation on a suite of leaf morphology traits. A systems genetics approach was used to integrate insertion and deletion locations, leaf morphology phenotypes, gene expression, and transcriptional network data, to provide an overview of how gene dosage influences morphology. Dosage-sensitive genomic regions were identified that influenced individual or pleiotropic morphological traits. We also identified cis-expression quantitative trait loci (QTL) within these dosage QTL regions, a subset of which modulated trans-expression QTL as well. Integration of data types within a gene co-expression framework identified co-expressed gene modules that are dosage sensitive, enriched for dosage expression QTL, and associated with morphological traits. Functional description of these modules linked dosage-sensitive morphological variation to specific cellular processes, as well as candidate regulatory genes. Together, these results show that gene dosage variation can influence morphological variation through complex changes in gene expression, and suggest that frequently occurring gene dosage variation has the potential to likewise influence quantitative traits in nature.


Assuntos
Dosagem de Genes , Folhas de Planta/fisiologia , Populus/genética , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Fenótipo , Folhas de Planta/genética , Populus/fisiologia , Locos de Características Quantitativas
4.
Plant Cell ; 33(7): 2149-2163, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33792719

RESUMO

In cultivated tetraploid potato (Solanum tuberosum), reduction to diploidy (dihaploidy) allows for hybridization to diploids and introgression breeding and may facilitate the production of inbreds. Pollination with haploid inducers (HIs) yields maternal dihaploids, as well as triploid and tetraploid hybrids. Dihaploids may result from parthenogenesis, entailing the development of embryos from unfertilized eggs, or genome elimination, entailing missegregation and the loss of paternal chromosomes. A sign of genome elimination is the occasional persistence of HI DNA in some dihaploids. We characterized the genomes of 919 putative dihaploids and 134 hybrids produced by pollinating tetraploid clones with three HIs: IVP35, IVP101, and PL-4. Whole-chromosome or segmental aneuploidy was observed in 76 dihaploids, with karyotypes ranging from 2n = 2x - 1 = 23 to 2n = 2x + 3 = 27. Of the additional chromosomes in 74 aneuploids, 66 were from the non-inducer parent and 8 from the inducer parent. Overall, we detected full or partial chromosomes from the HI parent in 0.87% of the dihaploids, irrespective of parental genotypes. Chromosomal breaks commonly affected the paternal genome in the dihaploid and tetraploid progeny, but not in the triploid progeny, correlating instability to sperm ploidy and to haploid induction. The residual HI DNA discovered in the progeny is consistent with genome elimination as the mechanism of haploid induction.


Assuntos
DNA/metabolismo , Solanum tuberosum/genética , Instabilidade Genômica/genética , Instabilidade Genômica/fisiologia , Genótipo , Haploidia , Poliploidia
5.
Plant Cell ; 33(1): 85-103, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751094

RESUMO

In angiosperms, endosperm development comprises a series of developmental transitions controlled by genetic and epigenetic mechanisms that are initiated after double fertilization. Polycomb repressive complex 2 (PRC2) is a key component of these mechanisms that mediate histone H3 lysine 27 trimethylation (H3K27me3); the action of PRC2 is well described in Arabidopsis thaliana but remains uncertain in cereals. In this study, we demonstrate that mutation of the rice (Oryza sativa) gene EMBRYONIC FLOWER2a (OsEMF2a), encoding a zinc-finger containing component of PRC2, causes an autonomous endosperm phenotype involving proliferation of the central cell nuclei with separate cytoplasmic domains, even in the absence of fertilization. Detailed cytological and transcriptomic analyses revealed that the autonomous endosperm can produce storage compounds, starch granules, and protein bodies specific to the endosperm. These events have not been reported in Arabidopsis. After fertilization, we observed an abnormally delayed developmental transition in the endosperm. Transcriptome and H3K27me3 ChIP-seq analyses using endosperm from the emf2a mutant identified downstream targets of PRC2. These included >100 transcription factor genes such as type-I MADS-box genes, which are likely required for endosperm development. Our results demonstrate that OsEMF2a-containing PRC2 controls endosperm developmental programs before and after fertilization.


Assuntos
Oryza/genética , Proteínas de Plantas/metabolismo , Endosperma/metabolismo , Epigênese Genética/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Proteínas de Plantas/genética , Transcriptoma/genética
6.
PLoS Genet ; 17(8): e1009735, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432802

RESUMO

Chromoanagenesis is a genomic catastrophe that results in chromosomal shattering and reassembly. These extreme single chromosome events were first identified in cancer, and have since been observed in other systems, but have so far only been formally documented in plants in the context of haploid induction crosses. The frequency, origins, consequences, and evolutionary impact of such major chromosomal remodeling in other situations remain obscure. Here, we demonstrate the occurrence of chromoanagenesis in poplar (Populus sp.) trees produced from gamma-irradiated pollen. Specifically, in this population of siblings carrying indel mutations, two individuals exhibited highly frequent copy number variation (CNV) clustered on a single chromosome, one of the hallmarks of chromoanagenesis. Using short-read sequencing, we confirmed the presence of clustered segmental rearrangement. Independently, we identified and validated novel DNA junctions and confirmed that they were clustered and corresponded to these rearrangements. Our reconstruction of the novel sequences suggests that the chromosomal segments have reorganized randomly to produce a novel rearranged chromosome but that two different mechanisms might be at play. Our results indicate that gamma irradiation can trigger chromoanagenesis, suggesting that this may also occur when natural or induced mutagens cause DNA breaks. We further demonstrate that such events can be tolerated in poplar, and even replicated clonally, providing an attractive system for more in-depth investigations of their consequences.


Assuntos
Cromotripsia/efeitos da radiação , Rearranjo Gênico/efeitos da radiação , Populus/genética , Evolução Biológica , Aberrações Cromossômicas/efeitos da radiação , Cromossomos/efeitos da radiação , Variações do Número de Cópias de DNA/genética , Raios gama/efeitos adversos , Rearranjo Gênico/genética , Haploidia
7.
PLoS Genet ; 16(2): e1008566, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32069274

RESUMO

Most angiosperms bear hermaphroditic flowers, but a few species have evolved outcrossing strategies, such as dioecy, the presence of separate male and female individuals. We previously investigated the mechanisms underlying dioecy in diploid persimmon (D. lotus) and found that male flowers are specified by repression of the autosomal gene MeGI by its paralog, the Y-encoded pseudo-gene OGI. This mechanism is thought to be lineage-specific, but its evolutionary path remains unknown. Here, we developed a full draft of the diploid persimmon genome (D. lotus), which revealed a lineage-specific whole-genome duplication event and provided information on the architecture of the Y chromosome. We also identified three paralogs, MeGI, OGI and newly identified Sister of MeGI (SiMeGI). Evolutionary analysis suggested that MeGI underwent adaptive evolution after the whole-genome duplication event. Transformation of tobacco plants with MeGI and SiMeGI revealed that MeGI specifically acquired a new function as a repressor of male organ development, while SiMeGI presumably maintained the original function. Later, a segmental duplication event spawned MeGI's regulator OGI on the Y-chromosome, completing the path leading to dioecy, and probably initiating the formation of the Y-chromosome. These findings exemplify how duplication events can provide flexible genetic material available to help respond to varying environments and provide interesting parallels for our understanding of the mechanisms underlying the transition into dieocy in plants.


Assuntos
Diospyros/genética , Evolução Molecular , Genoma de Planta/genética , Processos de Determinação Sexual , Cromossomos de Plantas/genética , Diploide , Flores/genética , Filogenia , Cromossomos Sexuais/genética
8.
PLoS Genet ; 16(5): e1008845, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453757

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1008566.].

9.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833931

RESUMO

Rice (Oryza sativa L.), one of the most important commodities and a primary food source worldwide, can be affected by adverse environmental factors. The chromosome segment substitution line 16 (CSSL16) of rice is considered salt-tolerant. A comparison of the transcriptomic data of the CSSL16 line under normal and salt stress conditions revealed 511 differentially expressed sequence (DEseq) genes at the seedling stage, 520 DEseq genes in the secondary leaves, and 584 DEseq genes in the flag leaves at the booting stage. Four BTB genes, OsBTBZ1, OsBTBZ2, OsBTBN3, and OsBTBN7, were differentially expressed under salt stress. Interestingly, only OsBTBZ1 was differentially expressed at the seedling stage, whereas the other genes were differentially expressed at the booting stage. Based on the STRING database, OsBTBZ1 was more closely associated with other abiotic stress-related proteins than other BTB genes. The highest expression of OsBTBZ1 was observed in the sheaths of young leaves. The OsBTBZ1-GFP fusion protein was localized to the nucleus, supporting the hypothesis of a transcriptionally regulatory role for this protein. The bt3 Arabidopsis mutant line exhibited susceptibility to NaCl and abscisic acid (ABA) but not to mannitol. NaCl and ABA decreased the germination rate and growth of the mutant lines. Moreover, the ectopic expression of OsBTBZ1 rescued the phenotypes of the bt3 mutant line and enhanced the growth of wild-type Arabidopsis under stress conditions. These results suggest that OsBTBZ1 is a salt-tolerant gene functioning in ABA-dependent pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plântula/genética , Plântula/metabolismo , Germinação/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética
10.
Trends Genet ; 35(11): 791-803, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421911

RESUMO

The advent of affordable, large-scale DNA sequencing methods, coupled with advanced computing power, is empowering a detailed analysis of the structure and function of chromosomes. Genomic instability, involving chromosome number and structure changes, has been documented in multiple systems. In plants, haploid induction through genome elimination has recently been connected mechanistically to the formation of complex chromosome reorganizations, known collectively as chromoanagenesis. These abnormalities can be triggered by altering the specialized centromeric histone 3, the epigenetic determinant of centromeres, which leads to loss of centromere function and chromosome missegregation. Other historical and recent instances of genomic instability, at the same time, suggest multiple causes. Their study provides a unique opportunity for a synthesis encompassing genome evolution, its response to stress, as well as the possibility of recruiting the connected mechanisms for genome engineering-based plant breeding.


Assuntos
Genoma , Instabilidade Genômica , Haploidia , Animais , Evolução Biológica , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Instabilidade Cromossômica , Segregação de Cromossomos , Cruzamentos Genéticos , Dano ao DNA , Amplificação de Genes , Micronúcleos com Defeito Cromossômico , Plantas/genética , Plantas/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(27): 13690-13699, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213538

RESUMO

Gene dosage variation and the associated changes in gene expression influence a wide variety of traits, ranging from cancer in humans to yield in plants. It is also expected to affect important traits of ecological and agronomic importance in forest trees, but this variation has not been systematically characterized or exploited. Here we performed a comprehensive scan of the Populus genome for dosage-sensitive loci affecting quantitative trait variation for spring and fall phenology and biomass production. The study population was a large collection of clonally propagated F1 hybrid lines of Populus that saturate the genome 10-fold with deletions and insertions (indels) of known sizes and positions. As a group, the phenotypic means of the indel lines consistently differed from control nonindel lines, with an overall negative effect of both insertions and deletions on all biomass-related traits but more diverse effects and an overall wider phenotypic distribution of the indel lines for the phenology-related traits. We also investigated the correlation between gene dosage at specific chromosomal locations and phenotype, to identify dosage quantitative trait loci (dQTL). Such dQTL were detected for most phenotypes examined, but stronger effect dQTL were identified for the phenology-related traits than for the biomass traits. Our genome-wide screen for dosage sensitivity in a higher eukaryote demonstrates the importance of global genomic balance and the impact of dosage on life history traits.


Assuntos
Dosagem de Genes/genética , Populus/genética , Característica Quantitativa Herdável , Cromossomos de Plantas/genética , Estudos de Associação Genética , Variação Genética/genética , Genoma de Planta/genética , Locos de Características Quantitativas/genética , Sintenia/genética
12.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163767

RESUMO

Salt stress is a major limiting factor in crop production and yield in many regions of the world. The objective of this study was to identify the genes responsible for salt tolerance in Thai rice populations. We performed a genome-wide association study with growth traits, relative water content, and cell membrane stability at the seedling stage, and predicted 25 putative genes. Eleven of them were located within previously reported salt-tolerant QTLs (ST-QTLs). OsCRN, located outside the ST-QTLs, was selected for gene characterization using the Arabidopsis mutant line with T-DNA insertion in the orthologous gene. Mutations in the AtCRN gene led to the enhancement of salt tolerance by increasing the ability to maintain photosynthetic pigment content and relative water content, while the complemented lines with ectopic expression of OsCRN showed more susceptibility to salt stress detected by photosynthesis performance. Moreover, the salt-tolerant rice varieties showed lower expression of this gene than the susceptible rice varieties under salt stress conditions. The study concludes that by acting as a negative regulator, OsCRN plays an important role in salt tolerance in rice.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas , Tolerância ao Sal , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Fenótipo , Fotossíntese , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Plântula/genética , Plântula/crescimento & desenvolvimento
13.
Plant J ; 101(1): 122-140, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31487093

RESUMO

Genomic imprinting regulates parent-specific transcript dosage during seed development and is mainly confined to the endosperm. Elucidation of the function of many imprinted genes has been hampered by the lack of corresponding mutant phenotypes, and the role of imprinting is mainly associated with genome dosage regulation or allocation of resources. Disruption of imprinted genes has also been suggested to mediate endosperm-based post-zygotic hybrid barriers depending on genetic variation and gene dosage. Here, we have analyzed the conservation of a clade from the MADS-box type I class transcription factors in the closely related species Arabidopsis arenosa, A. lyrata, and A. thaliana, and show that AGL36-like genes are imprinted and maternally expressed in seeds of Arabidopsis species and in hybrid seeds between outbreeding species. In hybridizations between outbreeding and inbreeding species the paternally silenced allele of the AGL36-like gene is reactivated in the hybrid, demonstrating that also maternally expressed imprinted genes are perturbed during hybridization and that such effects on imprinted genes are specific to the species combination. Furthermore, we also demonstrate a quantitative effect of genetic diversity and temperature on the strength of the post-zygotic hybridization barrier. Markedly, a small decrease in temperature during seed development increases the survival of hybrid F1 seeds, suggesting that abiotic and genetic parameters play important roles in post-zygotic species barriers, pointing at evolutionary scenarios favoring such effects. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA562212. All sequences generated in this study have been deposited in the National Center for Biotechnology Information Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/) with project number PRJNA562212.


Assuntos
Arabidopsis/genética , Hibridização Genética/genética , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Impressão Genômica/genética , Impressão Genômica/fisiologia , Temperatura
14.
Genome Res ; 27(3): 471-478, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28223399

RESUMO

During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays, although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteína Centromérica A/genética , Centrômero/genética , Polimorfismo Genético , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteína Centromérica A/química , Proteína Centromérica A/metabolismo , Evolução Molecular , Nucleossomos/metabolismo
15.
Plant Biotechnol J ; 18(10): 2068-2080, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32096293

RESUMO

Creating true-breeding lines is a critical step in plant breeding. Novel, completely homozygous true-breeding lines can be generated by doubled haploid technology in single generation. Haploid induction through modification of the centromere-specific histone 3 variant (CENH3), including chimeric proteins, expression of non-native CENH3 and single amino acid substitutions, has been shown to induce, on outcrossing to wild type, haploid progeny possessing only the genome of the wild-type parent, in Arabidopsis thaliana. Here, we report the characterization of 31 additional EMS-inducible amino acid substitutions in CENH3 for their ability to complement a knockout in the endogenous CENH3 gene and induce haploid progeny when pollinated by the wild type. We also tested the effect of double amino acid changes, which might be generated through a second round of EMS mutagenesis. Finally, we report on the effects of CRISPR/Cas9-mediated in-frame deletions in the αN helix of the CENH3 histone fold domain. Remarkably, we found that complete deletion of the αN helix, which is conserved throughout angiosperms, results in plants which exhibit normal growth and fertility while acting as excellent haploid inducers when pollinated by wild-type pollen. Both of these technologies, CRISPR mutagenesis and EMS mutagenesis, represent non-transgenic approaches to the generation of haploid inducers.

16.
Plant Physiol ; 180(1): 78-86, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792232

RESUMO

Nontransgenic genome editing in regenerable protoplasts, plant cells free of their cell wall, could revolutionize crop improvement because it reduces regulatory and technical complexity. However, plant tissue culture is known to engender frequent unwanted variation, termed somaclonal variation. To evaluate the contribution of large-scale genome instability to this phenomenon, we analyzed potatoes (Solanum tuberosum) regenerated from either protoplasts or stem explants for copy number changes by comparison of Illumina read depth. Whereas a control set of eight plants that had been propagated by cuttings displayed no changes, all 15 protoplast regenerants tested were affected by aneuploidy or structural chromosomal changes. Certain chromosomes displayed segmental deletions and duplications ranging from one to many. Resampling different leaves of the same plant found differences in three regenerants, indicating frequent persistence of instability. By comparison, 33 regenerants from stem explants used for Agrobacterium-mediated transformation displayed less frequent but still considerable (18%) large-scale copy number changes. Repetition of certain instability patterns suggested greater susceptibility in specific genomic sites. These results indicate that tissue culture, depending on the protocol used, can induce genomic instability resulting in large-scale changes likely to compromise final plant phenotype.


Assuntos
Instabilidade Genômica , Protoplastos/fisiologia , Solanum tuberosum/genética , Edição de Genes , Regeneração , Solanum tuberosum/fisiologia , Transformação Genética
17.
BMC Genomics ; 20(1): 76, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30669971

RESUMO

BACKGROUND: Salt stress, a major plant environmental stress, is a critical constraint for rice productivity. Dissecting the genetic loci controlling salt tolerance in rice for improving productivity, especially at the flowering stage, remains challenging. Here, we conducted a genome-wide association study (GWAS) of salt tolerance based on exome sequencing of the Thai rice accessions. RESULTS: Photosynthetic parameters and cell membrane stability under salt stress at the flowering stage; and yield-related traits of 104 Thai rice (Oryza sativa L.) accessions belonging to the indica subspecies were evaluated. The rice accessions were subjected to exome sequencing, resulting in 112,565 single nucleotide polymorphisms (SNPs) called with a minor allele frequency of at least 5%. LD decay analysis of the panel indicates that the average LD for SNPs at 20 kb distance from each other was 0.34 (r2), which decayed to its half value (~ 0.17) at around 80 kb. By GWAS performed using mixed linear model, two hundred loci containing 448 SNPs on exons were identified based on the salt susceptibility index of the net photosynthetic rate at day 6 after salt stress; and the number of panicles, filled grains and unfilled grains per plant. One hundred and forty six genes, which accounted for 73% of the identified loci, co-localized with the previously reported salt quantitative trait loci (QTLs). The top four regions that contained a high number of significant SNPs were found on chromosome 8, 12, 1 and 2. While many are novel, their annotation is consistent with potential involvement in plant salt tolerance and in related agronomic traits. These significant SNPs greatly help narrow down the region within these QTLs where the likely underlying candidate genes can be identified. CONCLUSIONS: Insight into the contribution of potential genes controlling salt tolerance from this GWAS provides further understanding of salt tolerance mechanisms of rice at the flowering stage, which can help improve yield productivity under salinity via gene cloning and genomic selection.


Assuntos
Oryza/genética , Tolerância ao Sal/genética , Flores , Loci Gênicos , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Oryza/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Tailândia
18.
Plant Cell ; 28(12): 2905-2915, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27956470

RESUMO

Epigenetic regulation can add a flexible layer to genetic variation, potentially enabling long-term but reversible cis-regulatory changes to an allele while maintaining its DNA sequence. Here, we present a case in which alternative epigenetic states lead to reversible sex determination in the hexaploid persimmon Diospyros kaki Previously, we elucidated the molecular mechanism of sex determination in diploid persimmon and demonstrated the action of a Y-encoded sex determinant pseudogene called OGI, which produces small RNAs targeting the autosomal gene MeGI, resulting in separate male and female individuals (dioecy). We contrast these findings with the discovery, in hexaploid persimmon, of an additional layer of regulation in the form of DNA methylation of the MeGI promoter associated with the production of both male and female flowers in genetically male trees. Consistent with this model, developing male buds exhibited higher methylation levels across the MeGI promoter than developing female flowers from either monoecious or female trees. Additionally, a DNA methylation inhibitor induced developing male buds to form feminized flowers. Concurrently, in Y-chromosome-carrying trees, the expression of OGI is silenced by the presence of a SINE (short interspersed nuclear element)-like insertion in the OGI promoter. Our findings provide an example of an adaptive scenario involving epigenetic plasticity.


Assuntos
Diospyros/genética , Epigênese Genética/genética , Poliploidia , Cromossomos de Plantas/genética , Metilação de DNA/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas/genética
20.
BMC Plant Biol ; 18(1): 335, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518322

RESUMO

BACKGROUND: Calmodulin (CaM) is an important calcium sensor protein that transduces Ca2+ signals in plant stress signaling pathways. A previous study has revealed that transgenic rice over-expressing the calmodulin gene OsCam1-1 (LOC_Os03g20370) is more tolerant to salt stress than wild type. To elucidate the role of OsCam1-1 in the salt stress response mechanism, downstream components of the OsCam1-1-mediated response were identified and investigated by transcriptome profiling and target identification. RESULTS: Transcriptome profiling of transgenic 'Khao Dawk Mali 105' rice over-expressing OsCam1-1 and wild type rice showed that overexpression of OsCam1-1 widely affected the expression of genes involved in several cellular processes under salt stress, including signaling, hormone-mediated regulation, transcription, lipid metabolism, carbohydrate metabolism, secondary metabolism, photosynthesis, glycolysis, tricarboxylic acid (TCA) cycle and glyoxylate cycle. Under salt stress, the photosynthesis rate in the transgenic rice was slightly lower than in wild type, while sucrose and starch contents were higher, suggesting that energy and carbon metabolism were affected by OsCam1-1 overexpression. Additionally, four known and six novel CaM-interacting proteins were identified by cDNA expression library screening with the recombinant OsCaM1. GO terms enriched in their associated proteins that matched those of the differentially expressed genes affected by OsCam1-1 overexpression revealed various downstream cellular processes that could potentially be regulated by OsCaM1 through their actions. CONCLUSIONS: The diverse cellular processes affected by OsCam1-1 overexpression and possessed by the identified CaM1-interacting proteins corroborate the notion that CaM signal transduction pathways compose a complex network of downstream components involved in several cellular processes. These findings suggest that under salt stress, CaM activity elevates metabolic enzymes involved in central energy pathways, which promote or at least maintain the production of energy under the limitation of photosynthesis.


Assuntos
Calmodulina/metabolismo , Oryza/metabolismo , Transdução de Sinais , Calmodulina/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Plantas Geneticamente Modificadas , Estresse Salino , Tolerância ao Sal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA