Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phys Rev Lett ; 122(1): 017202, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012682

RESUMO

We studied the magnetic ordering of thin films and bulk crystals of rutile RuO_{2} using resonant x-ray scattering across the Ru L_{2} absorption edge. Combining polarization analysis and azimuthal angle dependence of the magnetic Bragg signal, we have established the presence and characteristic of collinear antiferromagnetism in RuO_{2} with T_{N}>300 K. In addition to revealing a spin-ordered ground state in the simplest ruthenium oxide compound, the persistence of magnetic order even in nanometer-thick films lays the ground for potential applications of RuO_{2} in antiferromagnetic spintronics.

2.
Nat Mater ; 14(8): 796-800, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26006005

RESUMO

Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.

3.
Phys Rev Lett ; 110(9): 097004, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496740

RESUMO

We revisit the normal-state electronic structure of Sr(2)RuO(4) by angle-resolved photoemission spectroscopy with improved data quality, as well as ab initio band structure calculations in the local-density approximation with the inclusion of spin-orbit coupling. We find that the current model of a single surface layer (√2×√2)R45° reconstruction does not explain all detected features. The observed depth-dependent signal degradation, together with the close quantitative agreement with the slab calculations based on the surface crystal structure as determined by low-energy electron diffraction, reveal that-at a minimum-the subsurface layer also undergoes a similar although weaker reconstruction. This model accounts for all features-a key step in understanding the electronic structure-and indicates a surface-to-bulk progression of the electronic states driven by structural instabilities. Finally, we find no evidence for other phases stemming from either topological bulk properties or, alternatively, the interplay between spin-orbit coupling and the broken symmetry of the surface.

4.
Photoacoustics ; 29: 100453, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36718271

RESUMO

Collective lattice dynamics determine essential aspects of condensed matter, such as elastic and thermal properties. These exhibit strong dependence on the length-scale, reflecting the marked wavevector dependence of lattice excitations. The extreme ultraviolet transient grating (EUV TG) approach has demonstrated the potential of accessing a wavevector range corresponding to the 10s of nm length-scale, representing a spatial scale of the highest relevance for fundamental physics and forefront technology, previously inaccessible by optical TG and other inelastic scattering methods. In this manuscript we report on the capabilities of this technique in the context of probing thermoelastic properties of matter, both in the bulk and at the surface, as well as discussing future developments and practical considerations.

5.
Phys Rev Lett ; 109(26): 266406, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368593

RESUMO

We study Na2IrO3 by angle-resolved photoemission spectroscopy, optics, and band structure calculations in the local-density approximation (LDA). The weak dispersion of the Ir 5d-t(2g) manifold highlights the importance of structural distortions and spin-orbit (SO) coupling in driving the system closer to a Mott transition. We detect an insulating gap Δ(gap)≃340 meV which, at variance with a Slater-type description, is already open at 300 K and does not show significant temperature dependence even across T(N)≃15 K. An LDA analysis with the inclusion of SO and Coulomb repulsion U reveals that, while the prodromes of an underlying insulating state are already found in LDA+SO, the correct gap magnitude can only be reproduced by LDA+SO+U, with U=3 eV. This establishes Na2IrO3 as a novel type of Mott-like correlated insulator in which Coulomb and relativistic effects have to be treated on an equal footing.

6.
Phys Rev Lett ; 107(18): 186405, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22107654

RESUMO

The electronic structure of Bi(2)Se(3) is studied by angle-resolved photoemission and density functional theory. We show that the instability of the surface electronic properties, observed even in ultrahigh-vacuum conditions, can be overcome via in situ potassium deposition. In addition to accurately setting the carrier concentration, new Rashba-like spin-polarized states are induced, with a tunable, reversible, and highly stable spin splitting. Ab initio slab calculations reveal that these Rashba states are derived from 5-quintuple-layer quantum-well states. While the K-induced potential gradient enhances the spin splitting, this may be present on pristine surfaces due to the symmetry breaking of the vacuum-solid interface.

7.
Phys Rev Lett ; 106(12): 127005, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21517346

RESUMO

We observe apparent hole pockets in the Fermi surfaces of single-layer Bi-based cuprate superconductors from angle-resolved photoemission. From detailed low-energy electron diffraction measurements and an analysis of the angle-resolved photoemission polarization dependence, we show that these pockets are not intrinsic but arise from multiple overlapping superstructure replicas of the main and shadow bands. We further demonstrate that the hole pockets reported recently from angle-resolved photoemission [Meng et al., Nature (London) 462, 335 (2009)] have a similar structural origin and are inconsistent with an intrinsic hole pocket associated with the electronic structure of a doped CuO2 plane.

8.
Sci Adv ; 6(45)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33158874

RESUMO

Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional d-symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBa2Cu3O6+x (YBCO). Here, we revisit RSXS measurements of the CDW symmetry in YBCO, using a variation in the measurement geometry to provide enhanced sensitivity to orbital symmetry. We show that the (0 0.31 L) CDW peak measured at the Cu L edge is dominated by an s form factor rather than a d form factor as was reported previously. In addition, by measuring both (0.31 0 L) and (0 0.31 L) peaks, we identify a pronounced difference in the orbital symmetry of the CDW order along the a and b axes, with the CDW along the a axis exhibiting orbital order in addition to charge order.

9.
J Neurol Sci ; 272(1-2): 110-4, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18573503

RESUMO

The induction of neurological signs by immunization of rabbits with gangliosides has been a controversial topic for many years. Recently, Yuki et al. [N. Yuki, M. Yamada, M. Koga, M. Odaka, K. Susuki, Y. Tagawa, et al. Animal model of axonal Guillain-Barré syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 2001;49:712-720.] described an immunization protocol, including keyhole lympet hemocyanin in addition to ganglioside that induced a neurological disease resembling human Guillain-Barré syndrome. We employed this protocol in our laboratory and succeeded in reproducing the disease. Five different experiments were performed during a period of two years by different operators, using different batches of drugs, in a total of 26 rabbits. Despite minor variations in onset time and severity of the induced disease, the model proved to be reproducible. Both gangliosides and keyhole limpet hemocyanin are required for induction of disease.


Assuntos
Gangliosídeos/imunologia , Síndrome de Guillain-Barré/etiologia , Síndrome de Guillain-Barré/imunologia , Imunização/efeitos adversos , Animais , Modelos Animais de Doenças , Masculino , Nervos Periféricos/patologia , Coelhos , Fatores de Tempo
10.
Nat Phys ; 13(8): 806-811, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28781605

RESUMO

The influence of the Mott physics on the doping-temperature phase diagram of copper oxides represents a major issue that is subject of intense theoretical and experimental effort. Here, we investigate the ultrafast electron dynamics in prototypical single-layer Bi-based cuprates at the energy scale of the O-2p→Cu-3d charge-transfer (CT) process. We demonstrate a clear evolution of the CT excitations from incoherent and localized, as in a Mott insulator, to coherent and delocalized, as in a conventional metal. This reorganization of the high-energy degrees of freedom occurs at the critical doping pcr ≈0.16 irrespective of the temperature, and it can be well described by dynamical mean field theory calculations. We argue that the onset of the low-temperature charge instabilities is the low-energy manifestation of the underlying Mottness that characterizes the p < pcr region of the phase diagram. This discovery sets a new framework for theories of charge order and low-temperature phases in underdoped copper oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA