Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Traffic ; 15(4): 401-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24548619

RESUMO

Matrix metalloproteinase-27 (MMP-27) is poorly characterized. Sequence comparison suggests that a C-terminal extension (CTE) includes a potential transmembrane domain as in some membrane-type (MT)-MMPs. Having noticed that MMP-27 was barely secreted, we investigated its subcellular localization and addressed CTE contribution for MMP-27 retention. Intracellular MMP-27 was sensitive to endoglycosidase H. Subcellular fractionation and confocal microscopy evidenced retention of endogenous MMP-27 or recombinant rMMP-27 in the endoplasmic reticulum (ER) with locked exit across the intermediate compartment (ERGIC). Conversely, truncated rMMP-27 without CTE accessed downstream secretory compartments (ERGIC and Golgi) and was constitutively secreted. CTE addition to rMMP-10 (a secreted MMP) caused ER retention and blocked secretion. Addition of a PKA target sequence to the cytosolic C-terminus of transmembrane MT1-MMP/MMP-14 led to effective phosphorylation upon forskolin stimulation, but not for MMP-27, excluding transmembrane anchorage. Moreover, MMP-27 was protected from digestion by proteinase K. Finally, MT1-MMP/MMP-14 but neither endogenous nor recombinant MMP-27 partitioned in the detergent phase after Triton X-114 extraction, indicating that MMP-27 is not an integral membrane protein. In conclusion, MMP-27 is efficiently retained within the ER due to its unique CTE, which does not lead to stable membrane insertion. This could represent a novel ER retention system.


Assuntos
Retículo Endoplasmático/enzimologia , Metaloproteinases da Matriz/metabolismo , Sequência de Aminoácidos , Humanos , Metaloproteinases da Matriz/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia
2.
Cell Mol Life Sci ; 72(23): 4633-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26077601

RESUMO

Although cholesterol is essential for membrane fluidity and deformability, the level of its lateral heterogeneity at the plasma membrane of living cells is poorly understood due to lack of appropriate probe. We here report on the usefulness of the D4 fragment of Clostridium perfringens toxin fused to mCherry (theta*), as specific, non-toxic, sensitive and quantitative cholesterol-labeling tool, using erythrocyte flat membrane. By confocal microscopy, theta* labels cholesterol-enriched submicrometric domains in coverslip-spread but also gel-suspended (non-stretched) fresh erythrocytes, suggesting in vivo relevance. Cholesterol domains on spread erythrocytes are stable in time and space, restricted by membrane:spectrin anchorage via 4.1R complexes, and depend on temperature and sphingomyelin, indicating combined regulation by extrinsic membrane:cytoskeleton interaction and by intrinsic lipid packing. Cholesterol domains partially co-localize with BODIPY-sphingomyelin-enriched domains. In conclusion, we show that theta* is a useful vital probe to study cholesterol organization and demonstrate that cholesterol forms submicrometric domains in living cells.


Assuntos
Colesterol/metabolismo , Membrana Eritrocítica/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Compostos de Boro/química , Compostos de Boro/metabolismo , Linhagem Celular , Membrana Eritrocítica/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Microdomínios da Membrana/química , Camundongos , Mioblastos/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Temperatura
3.
J Lipid Res ; 55(7): 1331-42, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24826836

RESUMO

We recently reported that trace insertion of exogenous fluorescent (green BODIPY) analogs of sphingomyelin (SM) into living red blood cells (RBCs), partially spread onto coverslips, labels submicrometric domains, visible by confocal microscopy. We here extend this feature to endogenous SM, upon binding of a SM-specific nontoxic (NT) fragment of the earthworm toxin, lysenin, fused to the red monomeric fluorescent protein, mCherry [construct named His-mCherry-NT-lysenin (lysenin*)]. Specificity of lysenin* binding was verified with composition-defined liposomes and by loss of (125)I-lysenin* binding to erythrocytes upon SM depletion by SMase. The (125)I-lysenin* binding isotherm indicated saturation at 3.5 × 10(6) molecules/RBC, i.e., ∼3% of SM coverage. Nonsaturating lysenin* concentration also labeled sub-micrometric domains on the plasma membrane of partially spread erythrocytes, colocalizing with inserted green BODIPY-SM, and abrogated by SMase. Lysenin*-labeled domains were stable in time and space and were regulated by temperature and cholesterol. The abundance, size, positioning, and segregation of lysenin*-labeled domains from other lipids (BODIPY-phosphatidylcholine or -glycosphingolipids) depended on membrane tension. Similar lysenin*-labeled domains were evidenced in RBCs gently suspended in 3D-gel. Taken together, these data demonstrate submicrometric compartmentation of endogenous SM at the membrane of a living cell in vitro, and suggest it may be a genuine feature of erythrocytes in vivo.


Assuntos
Membrana Eritrocítica/metabolismo , Microdomínios da Membrana/metabolismo , Esfingomielinas/farmacologia , Humanos , Esfingomielinas/metabolismo , Toxinas Biológicas/farmacologia
4.
Mol Hum Reprod ; 20(8): 767-75, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24810263

RESUMO

Matrix metalloproteinases (MMPs) are key enzymes involved in extracellular matrix remodelling. In the human endometrium, the expression and activity of several MMPs are maximal during the menstrual phase. Moreover, MMPs are thought to be involved in the pathogenesis of endometriosis and cancers, in particular with invasion and metastasis. We recently reported that MMP-27 is a unique MMP with an intracellular retention motif. We investigated the expression and cellular localization of MMP-27 in the cycling human endometrium and in endometriotic lesions. MMP-27 mRNA was detected throughout the menstrual cycle. Despite large interpatient variations, mRNA levels increased from the proliferative to the secretory phase, to peak during the menstrual phase. MMP-27 was immunolocalized in large isolated cells scattered throughout the stroma and around blood vessels: these cells were most abundant at menstruation and were identified by immunofluorescence as CD45(+), CD163(+) and CD206(+) macrophages. CD163(+) macrophages were also abundant in endometriotic lesions, but showed different patterns in ovarian or peritoneal endometriotic lesions (co-labelling for CD206 and MMP-27) and rectovaginal lesions (no co-labelling). In conclusion, MMP-27 is expressed in a subset of endometrial macrophages related to menstruation and in ovarian and peritoneal endometriotic lesions.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Lectinas de Ligação a Manose/metabolismo , Metaloproteinases da Matriz Secretadas/metabolismo , Receptores de Superfície Celular/metabolismo , Endometriose/genética , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Receptor de Manose , Metaloproteinases da Matriz Secretadas/genética , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA