Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Physiol Plant ; 175(6): e14071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148220

RESUMO

In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.


Assuntos
Compostos de Amônio , Arabidopsis , Hepatófitas , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Arabidopsis/metabolismo , Sequência de Aminoácidos , Hepatófitas/genética , Hepatófitas/metabolismo , Compostos de Amônio/metabolismo
2.
Physiol Plant ; 174(1): e13607, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837246

RESUMO

The low bioavailability of nutrients, especially nitrogen (N) and phosphorus (P), is one of the most limiting factors for crop production. In this study, under N- and P-free nutrient solution (-N-P), nodulating white lupin plants developed some nodules and analogous cluster root structures characterized by different morphological, physiological, and molecular responses than those observed upon single nutrient deficiency (strong acidification of external media, a better nutritional status than -N+P and +N-P plants). The multi-elemental analysis highlighted that the concentrations of nutrients in white lupin plants were mainly affected by P availability. Gene-expression analyses provided evidence of interconnections between N and P nutritional pathways that are active to promote N and P balance in plants. The root exudome was mainly characterized by N availability in nutrient solution, and, in particular, the absence of N and P in the nutrient solution triggered a high release of phenolic compounds, nucleosides monophosphate and saponines by roots. These morphological, physiological, and molecular responses result from a close interplay between N and P nutritional pathways. They contribute to the good development of nodulating white lupin plants when grown on N- and P-free media. This study provides evidence that limited N and P availability in the nutrient solution can promote white lupin-Bradyrhizobium symbiosis, which is favourable for the sustainability of legume production.


Assuntos
Bradyrhizobium , Lupinus , Bradyrhizobium/fisiologia , Lupinus/metabolismo , Fixação de Nitrogênio/fisiologia , Fósforo/metabolismo , Raízes de Plantas/metabolismo
3.
J Exp Bot ; 72(15): 5336-5355, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34009335

RESUMO

Indolamines are tryptophan-derived specialized metabolites belonging to the huge and ubiquitous indole alkaloids group. Serotonin and melatonin are the best-characterized members of this family, given their many hormonal and physiological roles in animals. Following their discovery in plants, the study of plant indolamines has flourished and their involvement in important processes, including stress responses, growth and development, and reproduction, has been proposed, leading to their classification as a new category of phytohormones. However, the complex indolamine puzzle is far from resolved, particularly the biological roles of tryptamine, the early serotonin precursor representing the central hub of many downstream indole alkaloids. Tryptophan decarboxylase, which catalyzes the synthesis of tryptamine, strictly regulates the flux of carbon and nitrogen from the tryptophan pool into the indolamine pathway. Furthermore, tryptamine accumulates to high levels in the reproductive organs of many plant species and therefore cannot be classed as a mere intermediate but rather as an end product with potentially important functions in fruits and seeds. This review summarizes current knowledge on the role of tryptamine and its close relative serotonin, emphasizing the need for a clear understanding of the functions of, and mutual relations between, these indolamines and their biosynthesis pathways in plants.


Assuntos
Serotonina , Triptaminas , Descarboxilases de Aminoácido-L-Aromático , Reguladores de Crescimento de Plantas , Plantas
4.
Molecules ; 26(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833867

RESUMO

Anthocyanins are the largest group of polyphenolic pigments in the plant kingdom. These non-toxic, water-soluble compounds are responsible for the pink, red, purple, violet, and blue colors of fruits, vegetables, and flowers. Anthocyanins are widely used in the production of food, cosmetic and textile products, in the latter case to replace synthetic dyes with natural and sustainable alternatives. Here, we describe an environmentally benign method for the extraction of anthocyanins from red chicory and their characterization by HPLC-DAD and UPLC-MS. The protocol does not require hazardous solvents or chemicals and relies on a simple and scalable procedure that can be applied to red chicory waste streams for anthocyanin extraction. The extracted anthocyanins were characterized for stability over time and for their textile dyeing properties, achieving good values for washing fastness and, as expected, a pink-to-green color change that is reversible and can therefore be exploited in the fashion industry.


Assuntos
Antocianinas , Corantes , Flores/química , Têxteis , Antocianinas/química , Antocianinas/isolamento & purificação , Cromatografia Líquida , Corantes/química , Corantes/isolamento & purificação , Espectrometria de Massas em Tandem
5.
Plant J ; 93(2): 270-285, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29160608

RESUMO

Fruits stored at low temperature can exhibit different types of chilling injury. In apple, one of the most serious physiological disorders is superficial scald, which is characterized by discoloration and brown necrotic patches on the fruit exocarp. Although this phenomenon is widely ascribed to the oxidation of α-farnesene, its physiology is not yet fully understood. To elucidate the mechanism of superficial scald development and possible means of prevention, we performed an integrated metabolite screen, including an analysis of volatiles, phenols and lipids, together with a large-scale transcriptome study. We also determined that prevention of superficial scald, through the use of an ethylene action inhibitor, is associated with the triggering of cold acclimation-related processes. Specifically, the inhibition of ethylene perception stimulated the production of antioxidant compounds to scavenge reactive oxygen species, the synthesis of fatty acids to stabilize plastid and vacuole membranes against cold temperature, and the accumulation of the sorbitol, which can act as a cryoprotectant. The pattern of sorbitol accumulation was consistent with the expression profile of a sorbitol 6-phosphate dehydrogenase, MdS6PDH, the overexpression of which in transgenic Arabidopsis thaliana plants confirmed its involvement in the cold acclimation and freezing tolerance.


Assuntos
Ciclopropanos/metabolismo , Etilenos/antagonistas & inibidores , Malus/fisiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Transcriptoma , Aclimatação , Temperatura Baixa , Resistência à Doença , Etilenos/metabolismo , Frutas/genética , Frutas/imunologia , Frutas/metabolismo , L-Iditol 2-Desidrogenase/genética , Malus/genética , Malus/imunologia , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Metabolismo Secundário , Análise de Sequência de RNA , Sorbitol/metabolismo
6.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791398

RESUMO

Kiwifruit (Actinidia deliciosa cv. Hayward) is a commercially important crop with highly nutritional green fleshy fruits. The post-harvest maturation of the fruits is well characterized, but little is known about the metabolic changes that occur during fruit development. Here we used untargeted metabolomics to characterize the non-volatile metabolite profile of kiwifruits collected at different time points after anthesis, revealing profound metabolic changes before the onset of ripening including the depletion of many classes of phenolic compounds. In contrast, the phytohormone abscisic acid accumulated during development and ripening, along with two indolamines (serotonin and its precursor tryptamine), and these were monitored in greater detail by targeted metabolomics. The role of indolamines in kiwifruit development is completely unknown, so we also characterized the identity of genes encoding tryptophan decarboxylase in A. deliciosa and its close relative A. chinensis to provide insight into the corresponding biological processes. Our results indicate that abscisic acid and indolamines fulfill unrecognized functions in the development and ripening of kiwifruits.


Assuntos
Actinidia/metabolismo , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Metaboloma , Metabolômica , Desenvolvimento Vegetal , Actinidia/classificação , Actinidia/genética , Sequência de Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Cromatografia Líquida , Biologia Computacional/métodos , Frutas/metabolismo , Espectrometria de Massas , Metabolômica/métodos , Filogenia , Desenvolvimento Vegetal/genética , Serotonina/metabolismo , Triptaminas/metabolismo
7.
Plant J ; 91(2): 220-236, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370629

RESUMO

Grapevine organs accumulate anthocyanins in a cultivar-specific and environmentally induced manner. The MYBA1-A2 genes within the berry color locus in chromosome 2 represent the major genetic determinants of fruit color. The simultaneous occurrence of transposon insertions and point mutations in these genes is responsible for most white-skinned phenotypes; however, the red pigmentation found in vegetative organs suggests the presence of additional regulators. This work describes a genomic region of chromosome 14 containing three closely related R2R3-MYB genes, named MYBA5, MYBA6 and MYBA7. Ectopic expression of the latter two genes in grapevine hairy roots promoted anthocyanin accumulation without affecting other phenylpropanoids. Transcriptomic profiling of hairy roots expressing MYBA1, MYBA6 and MYBA7 showed that these regulators share the activation of late biosynthetic and modification/transport-related genes, but differ in the activation of the FLAVONOID-3'5'-HYDROXYLASE (F3'5'H) family. An alternatively spliced MYBA6 variant was incapable of activating anthocyanin synthesis, however, because of the lack of an MYC1 interaction domain. MYBA1, MYBA6.1 and MYBA7 activated the promoters of UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFGT) and ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (3AT), but only MYBA1 induced F3'5'H in concordance with the low proportion of tri-hydroxylated anthocyanins found in MYBA6-A7 hairy roots. This putative new color locus is related to the red/cyanidic pigmentation of vegetative organs in black- and white-skinned cultivars, and forms part of the UV-B radiation response pathway orchestrated by ELONGATED HYPOCOTYL 5 (HY5). These results demonstrate the involvement of additional anthocyanin regulators in grapevine and suggest an evolutionary divergence between the two grape color loci for controlling additional targets of the flavonoid pathway.


Assuntos
Antocianinas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/metabolismo , Antocianinas/genética , Cromossomos de Plantas , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Vitis/genética
8.
Plant Physiol ; 172(3): 1821-1843, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27670818

RESUMO

The molecular events that characterize postripening grapevine berries have rarely been investigated and are poorly defined. In particular, a detailed definition of changes occurring during the postharvest dehydration, a process undertaken to make some particularly special wine styles, would be of great interest for both winemakers and plant biologists. We report an exhaustive survey of transcriptomic and metabolomic responses in berries representing six grapevine genotypes subjected to postharvest dehydration under identical controlled conditions. The modulation of phenylpropanoid metabolism clearly distinguished the behavior of genotypes, with stilbene accumulation as the major metabolic event, although the transient accumulation/depletion of anthocyanins and flavonols was the prevalent variation in genotypes that do not accumulate stilbenes. The modulation of genes related to phenylpropanoid/stilbene metabolism highlighted the distinct metabolomic plasticity of genotypes, allowing for the identification of candidate structural and regulatory genes. In addition to genotype-specific responses, a core set of genes was consistently modulated in all genotypes, representing the common features of berries undergoing dehydration and/or commencing senescence. This included genes controlling ethylene and auxin metabolism as well as genes involved in oxidative and osmotic stress, defense responses, anaerobic respiration, and cell wall and carbohydrate metabolism. Several transcription factors were identified that may control these shared processes in the postharvest berry. Changes representing both common and genotype-specific responses to postharvest conditions shed light on the cellular processes taking place in harvested berries stored under dehydrating conditions for several months.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Vitis/crescimento & desenvolvimento , Vitis/genética , Dessecação , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Metaboloma/genética , Metabolômica , Análise de Componente Principal , Propanóis/metabolismo , Estilbenos/metabolismo , Transcriptoma/genética
9.
Rapid Commun Mass Spectrom ; 31(3): 292-300, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27935129

RESUMO

RATIONALE: Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are both used to generate ions for the analysis of metabolites by liquid chromatography/mass spectrometry (LC/MS). We compared the performance of these methods for the analysis of Corvina grapevine berry methanolic extracts, which are complex mixtures of diverse metabolites. METHODS: Corvina berries representing three ripening stages (veraison, early-ripening and full-ripening) were collected during two growing seasons, powdered and extracted with methanol. Untargeted metabolomic analysis was carried out by LC/ESI-MS and LC/APCI-MS. Processed data files were assembled into a data matrix for multivariate statistical analysis. The limits of detection (LODs), limits of quantification (LOQs), linear ranges, and matrix effects were investigated for strongly polar metabolites such as sucrose and tartaric acid and for moderately polar metabolites such as caftaric acid, epicatechin and quercetin 3-O-glucoside. RESULTS: Multivariate statistical analysis of the 608 features revealed that APCI was particularly suitable for the ionization of strongly polar metabolites such as sugars and organic acids, whereas ESI was more suitable for moderately polar metabolites such as flavanols, flavones and both glycosylated and acylated anthocyanins. APCI generated more fragment ions whereas ESI generated more adducts. ESI achieved lower LODs and LOQs for sucrose and tartaric acid but featured narrower linear ranges and greater matrix effects. CONCLUSIONS: ESI and APCI are not complementary ion sources. Indeed, ESI can be exploited to analyze moderately polar metabolites, whereas APCI can be used to investigate weakly polar/non-polar metabolites and, as demonstrated by our results, also strongly polar metabolites. ESI and APCI can be used in parallel, exploiting their strengths to cover the plant metabolome more broadly than either method alone. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida/métodos , Frutas/química , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Vitis/química , Flavonoides/análise , Frutas/metabolismo , Limite de Detecção , Modelos Lineares , Metaboloma , Análise Multivariada , Análise de Componente Principal , Reprodutibilidade dos Testes , Açúcares/análise , Vitis/metabolismo
10.
BMC Plant Biol ; 15: 191, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26245744

RESUMO

BACKGROUND: The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. RESULTS: To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. CONCLUSIONS: Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.


Assuntos
Interação Gene-Ambiente , Metaboloma , Proteínas de Plantas/genética , Vitis/genética , Frutas/genética , Frutas/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análise de Sequência de Proteína , Vitis/metabolismo
11.
Curr Genet ; 60(4): 285-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24981976

RESUMO

The aim of this study was to investigate the impact of different 4 °C post-harvest storage periods on the quality of the white truffle Tuber magnatum. The expression of selected genes and the profiles of non-volatile metabolites have been analyzed. The up-regulation of genes related to cell wall metabolism and to a putative laccase points to cell wall modifications and browning events during cold storage. Time course RT-qPCR experiments have demonstrated that such transcription events probably depend on the ripening status, since this is delayed in partially ripe fruiting bodies. Changes in the concentrations of linoleate-derived metabolites occur during the first 3 days of considered cold storage, while the other metabolites, such as the amino acids, do not change. Taken together, the results demonstrate that complex molecular events occur in white truffles in the post-harvest period and before they are used as fresh products.


Assuntos
Ascomicetos/genética , Carpóforos/genética , Regulação Fúngica da Expressão Gênica , Ascomicetos/metabolismo , Parede Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Temperatura Baixa , Primers do DNA/genética , DNA Complementar/genética , Carpóforos/metabolismo , Metabolômica , Análise Multivariada , RNA Fúngico/genética , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas por Ionização por Electrospray , Regulação para Cima
12.
Sci Rep ; 14(1): 4791, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413638

RESUMO

Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.


Assuntos
Artemisia , Artemisininas , Sesquiterpenos , Artemisia/química , Bioprospecção , Artemisininas/metabolismo , Sesquiterpenos/metabolismo
13.
Plants (Basel) ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771739

RESUMO

Plants are valuable sources of secondary metabolites with pharmaceutical properties, but only a small proportion of plant life has been actively exploited for medicinal purposes to date. Underexplored plant species are therefore likely to contain novel bioactive compounds. In this study, we investigated the content of secondary metabolites in the flowers, leaves and pseudobulbs of the orchid Oncidium sotoanum using an untargeted metabolomics approach. We observed the strong accumulation of C-diglycosylated chrysin derivatives, which are rarely found in nature. Further characterization revealed evidence of antioxidant activity (FRAP and DPPH assays) and potential activity against neurodegenerative disorders (MAO-B inhibition assay) depending on the specific molecular structure of the metabolites. Natural product bioprospecting in underexplored plant species based on untargeted metabolomics can therefore help to identify novel chemical structures with diverse pharmaceutical properties.

14.
Front Plant Sci ; 14: 1107954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794212

RESUMO

The partial dehydration of grapes after harvest is a traditional practice in several winegrowing regions that leads to the production of high quality wines. Postharvest dehydration (also known as withering) has a significant impact on the overall metabolism and physiology of the berry, yielding a final product that is richer in sugars, solutes, and aroma compounds. These changes are, at least in part, the result of a stress response, which is controlled at transcriptional level, and are highly dependent on the grape water loss kinetics and the environmental parameters of the facility where grapes are stored to wither. However, it is difficult to separate the effects driven by each single environmental factor from those of the dehydration rate, especially discerning the effect of temperature that greatly affects the water loss kinetics. To define the temperature influence on grape physiology and composition during postharvest dehydration, the withering of the red-skin grape cultivar Corvina (Vitis vinifera) was studied in two conditioned rooms set at distinct temperatures and at varying relative humidity to maintain an equal grape water loss rate. The effect of temperature was also studied by withering the grapes in two unconditioned facilities located in geographic areas with divergent climates. Technological, LC-MS and GC-MS analyses revealed higher levels of organic acids, flavonols, terpenes and cis- and trans-resveratrol in the grapes withered at lower temperature conditions, whereas higher concentrations of oligomeric stilbenes were found in the grapes stored at higher temperatures. Lower expression of the malate dehydrogenase and laccase, while higher expression of the phenylalanine ammonia-lyase, stilbene synthase and terpene synthase genes were detected in the grapes withered at lower temperatures. Our findings provide insights into the importance of the temperature in postharvest withering and its effect on the metabolism of the grapes and on the quality of the derived wines.

15.
Front Plant Sci ; 13: 975434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035661

RESUMO

Tryptamine and serotonin are indolamines that fulfill diverse biological functions in all kingdoms of life. Plants convert l-tryptophan into tryptamine and then serotonin via consecutive decarboxylation and hydroxylation reactions catalyzed by the enzymes tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H). Tryptamine and serotonin accumulate to high levels in the edible fruits and seeds of many plant species, but their biological roles in reproductive organs remain unclear and the metabolic pathways have not been characterized in detail. We identified three TDC genes and a single T5H gene in tomato (Solanum lycopersicum L.) by homology-based screening and confirmed their activity by heterologous expression in Nicotiana benthamiana. The co-analysis of targeted metabolomics and gene expression data revealed complex spatiotemporal gene expression and metabolite accumulation patterns that suggest the involvement of the serotonin pathway in multiple biological processes. Our data support a model in which SlTDC1 allows tryptamine to accumulate in fruits, SlTDC2 causes serotonin to accumulate in aerial vegetative organs, and SlTDC3 works with SlT5H to convert tryptamine into serotonin in the roots and fruits.

16.
Plants (Basel) ; 11(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297735

RESUMO

Cucurbitacins, structurally different triterpenes mainly found in the members of Cucurbitaceae, possess a vast pharmacological potential. Genus Cucurbita, Cucumis, and Citrullus are affluent in these bioactive compounds, and, amongst them, Citrullus colocynthis (L.) Schrad. is widely exploited in folk medicine, since a huge number of diseases are successfully treated with organic and aqueous extracts obtained from different organs and tissues of the plant. The well-known pharmacological activities of such species have been attributed to its peculiar composition, which includes cucurbitacins and other bioactive molecules; thus, owing to its high importance as a valuable natural resource for pharmaceuticals and nutraceuticals, C. colocynthis propagation and multiplication protocols are considered significant, but the exploitation of its phytochemical potential is limited by the restricted cultivation conditions and the low rate of seed germination in the natural environment; in fact, the assessment of accumulation rate of specific phytochemicals under controlled conditions is still missing. Axenically sprouted plantlets obtained without the use of culture media or the addition of hormones have been evaluated here for the production of bioactive compounds and relevant bioactive features. Our results proved that derived organic extracts contain cucurbitacins and other bioactives, show antioxidant potential, and exert activity against some pathogenic fungi (Candida krusei, C. albicans, C. parapsilosis, C. glabrata, and Aspergillus flavus), supporting the feasibility of a methodology intended to scale-up cultivation of this species as a source of pharmaceutically interesting compounds, achievable from plantlets cultivated under laboratory conditions.

17.
Plants (Basel) ; 10(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494524

RESUMO

Usually regarded as less evolved than their more recently diverged vascular sisters, which currently dominate vegetation landscape, bryophytes seem having nothing to envy to the defensive arsenal of other plants, since they had acquired a suite of chemical traits that allowed them to adapt and persist on land. In fact, these closest modern relatives of the ancestors to the earliest terrestrial plants proved to be marvelous chemists, as they traditionally were a popular remedy among tribal people all over the world, that exploit their pharmacological properties to cure the most different diseases. The phytochemistry of bryophytes exhibits a stunning assortment of biologically active compounds such as lipids, proteins, steroids, organic acids, alcohols, aliphatic and aromatic compounds, polyphenols, terpenoids, acetogenins and phenylquinones, thus it is not surprising that substances obtained from various species belonging to such ancestral plants are widely employed as antitumor, antipyretic, insecticidal and antimicrobial. This review explores in particular the antifungal potential of the three Bryophyta divisions-mosses (Musci), hornworts (Anthocerotae) and liverworts (Hepaticae)-to be used as a sources of interesting bioactive constituents for both pharmaceutical and agricultural areas, providing an updated overview of the latest relevant insights.

18.
Plants (Basel) ; 10(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834864

RESUMO

Land plants produce a vast arsenal of specialized metabolites and many of them display interesting bioactivities in humans. Recently, flavonol quercetin gained great attention in the light of the COVID-19 pandemic because, in addition to the anti-inflammatory, antiviral and anti-cancer activity already described, it emerged as possible inhibitor of 3CLpro, the major protease of SARS-CoV-2 virus. Plant cell and tissue culture (PCTC) is an attractive platform for the biotechnological production of plant metabolites. This technology allows a large amount of water and agricultural land to be saved and, being free of contaminants in the process, it is suitable for scaling up the production in bioreactors. In a project aimed to generate and screen in vitro plant cells for the production of valuable specialized metabolites for commercial production, we generated various cell lines from Actinidia deliciosa (kiwi fruit tree) and Actinidia chinensis (gold kiwi fruit tree), that were able to produce relevant amounts of quercetin derivatives, mainly quercetin glycosides. Three cell lines from A. deliciosa were characterized by targeted and untargeted metabolomics. In standard growing conditions, they produce and accumulate up to 13.26 mg/100 g fresh weight (419.76 mg/100 g dry weight) of quercetin derivatives. To address future industrial applications, these cell lines should be entered into an acceleration program to further increase the amount of these metabolites by optimizing the culture conditions and elicitation.

19.
Biology (Basel) ; 10(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924913

RESUMO

The false fruits of apple (Malus domestica) and pear (Pyrus communis) are consumed all over the world, contributing to the dietary intake of health-promoting antioxidant phytochemicals. For example, polyphenols confer many beneficial effects (according to their chemical structure, bioavailability, and absorption efficiency in the gut) and the consumption of polyphenol-rich apple and pear fruits may therefore reduce the risk of some diseases. However, the content of such molecules is highly dependent on the specific fruit cultivar. To examine this metabolic diversity in detail, we used metabolomic analysis (NMR and HPLC-DAD/MS) to profile the metabolome of six apple and five pear cultivars. We also determined the antioxidant capacity of the extracts (FRAP assay) and correlated this with the metabolomic composition and abundance of specific metabolites. We observed the cultivar-specific accumulation of sugars, amino acids, malic acid, and various polyphenols, which was also related to the growing season for some cultivars. We found that the ancient Italian apple Pom Prussian was enriched for chlorogenic acid as well as more characteristic polyphenols (phloretin derivatives), the pear cultivar Abate Fetel was low in sucrose, and both cultivars displayed high in vitro antioxidant activity. These cultivars may, therefore, be particularly attractive to health-conscious consumers.

20.
N Biotechnol ; 56: 38-45, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731038

RESUMO

Wheat bran could be utilised as feedstock for innovative and sustainable biorefinery processes. Here, an enzymatic hydrolysis process for ferulic acid (FA) extraction was optimised step by step for total wheat bran (Tritello) and then also applied to the outer bran layer (Bran 1). Proteins, reducing sugars, total phenols and FA were quantified. The highest FA yields (0.82-1.05 g/kg bran) were obtained either by rehydrating the bran by autoclaving (Tritello) or by steam explosion (Bran 1) using a bran/water ratio of 1:20, followed by enzymatic pre-treatment with Alcalase and Termamyl, to remove protein and sugars, and a final enzymatic hydrolysis with Pentopan and feruloyl esterase to solubilise phenol. FA was recovered from the final digestate via solid phase extraction. A 40-fold scale-up was also performed and the release of compounds along all the process steps and at increasing incubation times was monitored. Results showed that FA was initially present at a minimum level while it was specifically released during the enzymatic treatment. In the final optimized process, the FA extraction yield was higher than that obtained with NaOH control hydrolysis while, in comparison with other FA enzymatic extraction methods, fewer process steps were required and no buffers, strong acid/alkali nor toxic compounds were used. Furthermore, the proposed process may be easily scaled-up, confirming the feasibility of wheat bran valorisation by biorefinery processes to obtain valuable compounds having several areas of potential industrial exploitation.


Assuntos
Ácidos Cumáricos/isolamento & purificação , Fibras na Dieta/metabolismo , Subtilisinas/metabolismo , alfa-Amilases/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA